ICA Tutorial on Generalisation & Multiple Representation 2 July 2011 Paris

Lecture 4 : Constraints: in requirement analysis and evaluation (30 mins)

Jantien Stoter Dr.

TU Delft & Kadaster & Geonovum

On behalf of EuroSDR generalisation team: Blanca Baella, Connie Blok, Dirk Burghardt, Cécile Duchêne, Maria Pla, Nicolas Regnauld and Guillaume Touya

Overview

Constraints in the EuroSDR project

Introduction of the project

Role of constraints in requirement analysis

Constraints in evaluation

Topics for discussions

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

EuroSDR generalisation project

EuroSDR project
European Spatial Data Research

• "State-of-the-art of automated generalisation in commercial software"

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Objectives of the project

Possibilities/limitations of commercial software systems for automated generalisation with respect to NMA requirements

What different generalisation solutions can be generated for one test case?

uroSDR generalisation state-of-the-art project 14 May 2009, Paris **EuroSDR Meeting**

EuroSDR core project team

- Dirk Burghardt (TU Dresden)
- 😼 Blanca Baella (ICC)
- Cécile Duchêne (IGN, France)
- 🕹 Maria Pla (ICC)
- Vicolas Regnauld (OS UK)
- 🐱 Guillaume Touya (IGN, France)
- Jantien Stoter (TU Delft & Kadaster)

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

EuroSDR generalisation project

- **Wave Requirement analysis Oct 2006 till June 2007**
- Testing June 2007 till Spring 2008
- Evaluation Summer 2008 till Spring 2009
- Finalising the project Autumn 2009

Overview

Constraints in the EuroSDR project

Introduction of the project

Role of constraints in requirement analysis

Constraints in evaluation

Topics for discussions

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Constraints in requirement analysis

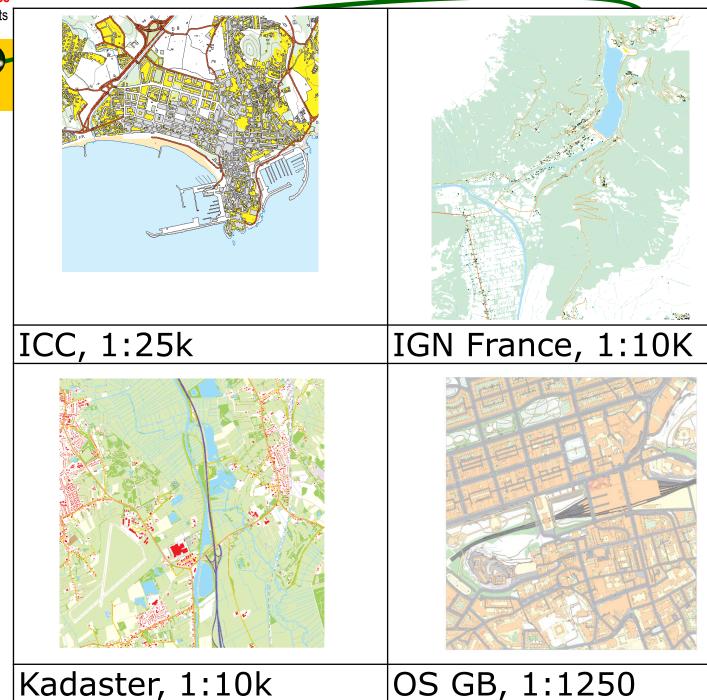
- 1. Selecting and sourcing test cases
- 2. Formalising requirements in constraints
- 3. Harmonising constraints
- 4. Comparing 4 constraint sets

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

15

A.

1. Selecting test cases


Area type	Source dataset	Target dataset	Provided by	Nr input	Main layers
Urban area	1:1250	1:25k	OS GB	37	buildings, roads, river, relief
Mountainous area	1:10k	1:50k	IGN France	23	village, river, land use
Rural area	1:10k	1:50k	Kadaster, NL	29	small town, land use, planar partition
Costal area	1:25k	1:50k	ICC Catalonia	74	village, land use (not mosaic), hydrography

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Source test datatets

ICA

2. Formalisation of requirements

- By constraints
- 🕹 Why:

Selecting and sourcing test cases Defining requirements in constraints

Harmonising constraints Comparing constraint sets

To define how the output should look like, without addressing how this should be achieved

Items in constraint template

- Constraint type
- Geometry type
- Class(es)
- Condition of object being concerned with this contraint
- Condition to be respected
- Condition depends on initial value?
- Preferred action
- Importance

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 10 July 2005 - A Coruña

LECTURE 1 © W. Mackaness, 2005

2. Defining constraints

	Example on one	Example on	Example on group				
	object	two objects	of objects				
<i>Condition to be respected</i>	Area of buildings > 0.4 map mm ²	building must be parallel to road	target building density should be equal to initial density ± 20 %				

Result: 250 constraints often covering similar situations

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

3. Harmonising constraints

Many constraints cover more or less similar situations Image: Class 1 Class 2 Condition to be r

NMA	Class 1	Class 2	Condition to be respected
IGN	Building	Road	Building must be adjacent to road symbol
OSUK	Building	Road	The building is shown adjacent to the road
ICC	Building	Road	Adjacent or > 10 m. If minimal distance between their symbols < 7.5 m, building must be rotated and displaced to be adjacent to road symbol. If > 7.5, building must be displaced
TDK	Building	Part of road	Building must be adjacent to road symbol

NMA	Class	Condition to be respected
IGN	Building	Building should not appear in DCM
OSUK	Building	Not displayed
ICC	Building	Maintain and area > 400 m2
TDK	Building	Instance should not appear in DCM if length (edge or diameter) < 20m

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

3. Harmonising constraints

- Why, — Simplify test
 - Improve evaluation

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Result of harmonisation process

- **45** generic constraints:
 - 21 generic constraints on one object
 - 11 constraints on two objects
 - 13 constraints on group of objects

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Main constraints

47.2

$\langle \cdot, \cdot \rangle$									
217	Constraint type	Property	Condition to be respected						
ે શ	Constraints on one object								
100	Minimal dimension	Area	target area $>$ x map mm ² ; target area = initial						
3 8			area ± x %						
1-1-1-P		Width of any part	target width > x map mm						
5 ° 4		Area of protrusion/recess	target area $> x map mm2$						
XI		Length of an edge/line	target length > x map mm						
갔니	Shape	General shape	target shape should be similar to initial shape						
VX.		Squareness	[initial value of angle = 90° (tolerance = \pm						
m.			x°)] target angles = 90°						
<u>}</u> }		Elongation	target elongation = initial elongation \pm x %						
¥_	Topology	Self-intersection	[initially, no self-intersection] no self-						
511			intersection must be created						
ži)		Coalescence	coalescence must be avoided						
18	Position/Orientation	General orientation	target orientation = initial orientation \pm x %						
3		Positional accuracy	target absolute position = initial absolute						
140			position $\pm x$ map mm						
1.4. 1.4.	Constraints on two objects								
Ži į	Minimal dimensions	Minimal distance	target distance > x map mm						
217	Topology	Connectivity	[initially connected] target connectivity =						
िन्न			initial connectivity						
LA !!	Position	Relative position	target relative position = initial relative						
3 3			position						
14	Constraints on a group of objects								
5 T.	Shape	Alignment	initial alignment should be kept						
Y.J	Distribution & Statistics	Distribution of characteristics	target distribution should be similar to initial						
10/			distribution						
1		Density of buildings (black/white)	target density should be equal to initial						
AC			density \pm x %						

Result of harmonisation process

About 300 constraints are defined as specialisations of generic constraints

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

ACI

4. Analysing constraints in test cases

	_	Number of constraints for different constraint								Number of constraints on different feature classes									
Test case	Total number of constraints	on one object	on two objects	on group of objects	Model generalisation	Min. dimension and granularity	Position	Orientation	Shape	Topology	Distribution / Stat	Other	Building	Land use	Road	Water	Relief	Coastal features	Any
ICC	137	86	23	28	12	80	0	4	19	12	5	5	39	20	16	25	8	19	10
Kad	52	27	21	4	11	18	1	0	1	6	0	15	10	13	23	3	0	0	3
IGN	61	32	15	14	2	15	2	4	15	12	2	9	33	2	12	9	2	0	3
OS	49	24	13	12	2	16	1	0	0	8	0	22	24	1	8	1	8	0	7
	299	169 ‹	72	58	16	129	4	8	35	38	7	51	106	36	59	38	18	19	23

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Why are the constraints unbalanced?

- Extend of scientific research (e.g. generalisation of buildings)
- Incomplete handling, because focus was set only on specific data sets
- Wumber of constraints defined is proportional to number and complexity of map objects (effort needed on manual generalisation)

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Overview

Constraints in the EuroSDR project

Introduction of the project

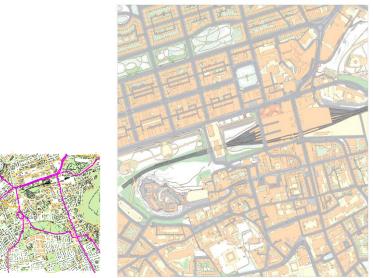
Role of constraints in requirement analysis

Constraints in evaluation

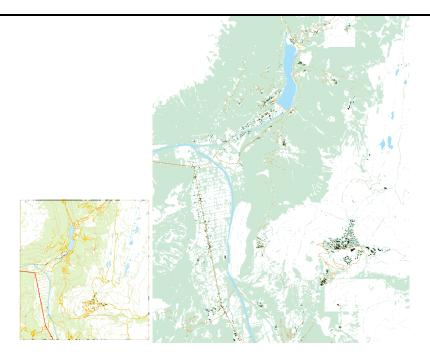
Topics for discussions

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Outputs to be evaluated


35 test outputs were obtained (appr 700 thematic layers). NB: 1 test cost appr 1 week

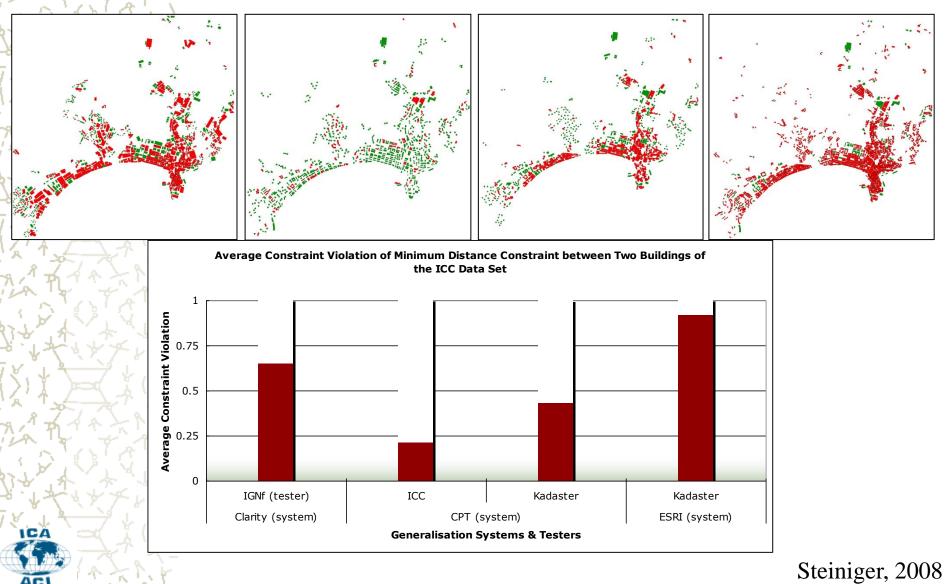
ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris


1:50K, derived from 1:25K, ICC

1:25K, derived from 1:1250, OSGB

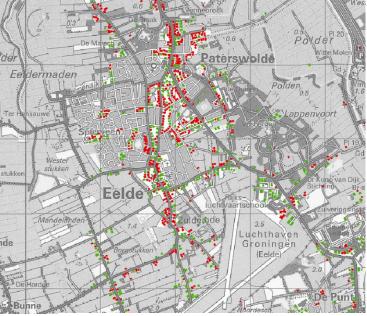
1:50K, derived from 1:10K, TDK

1:50K, derived from 1:10K, IGN, France


Evaluation of generalised outputs

- Automated constraint-based evaluation Dirk Burghardt, Stefan Schmidt, University of Zurich
- Evaluation which visually compared different outputs for one test case
 - **Cecile Duchene, IGN France**
- Qualitative evaluation by cartographic experts Connie Blok, Jantien Stoter, ITC

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris


1. Automated constraint based evaluation

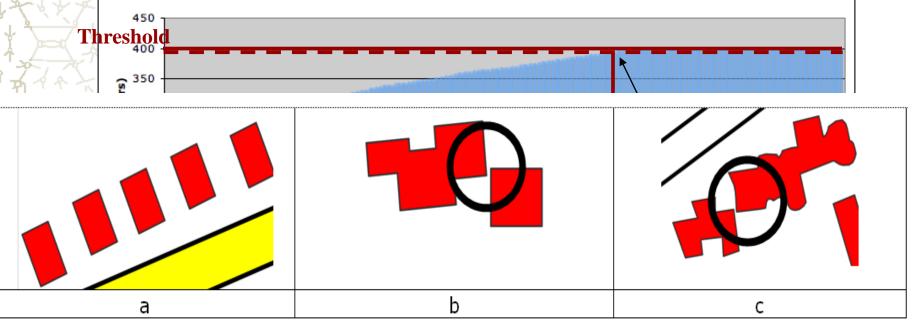
1. Automated constraint based evaluation

Applied to interactively generalised data

1. Target area ≥ 0.16 map mm2
 2. Target distance ≥ 0.2 map mm

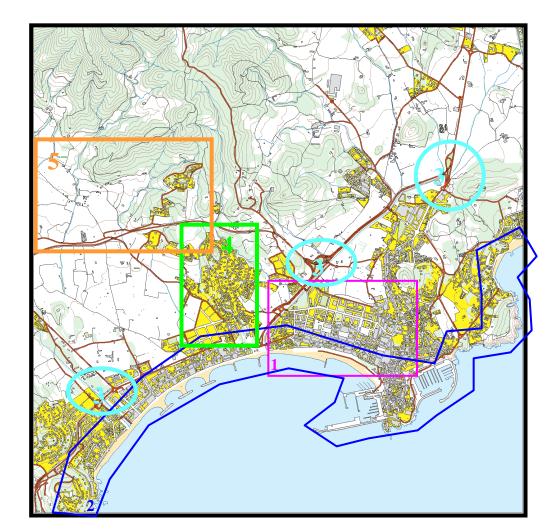
Source: TD Kataster 1:50k

26% of buildings are too small 46% of buildings are too close

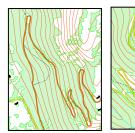

Schmidt 2008

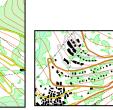
ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Results on interactively generalised data

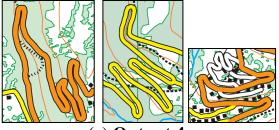

Explanation of 'errors':

- Flexibility range; partly ignore values to meet more important conditions
- Constraints do not always represent cartographic conflicts

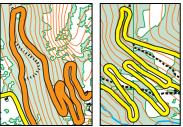


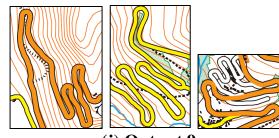

2. Comparison evaluation

. Town centre blocks and streets representation (selection, aggregation) **2.** Coastline simplification **31 Conflicts in road interchanges** 4. Generalization of suburban buildings (namely: preservation of buildings spatial distribution, **buildings** alignments) 5. Parallelism between roads and buildings

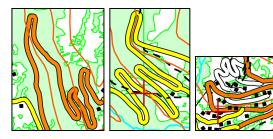


IGNF dataset – Example: mountainous roads

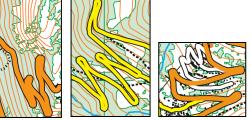


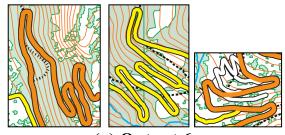


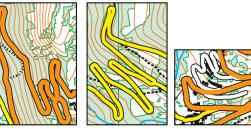
(e) Output 4



(i) Output 8




(h) Output 7


(f) Output 5

(b) Output 1

(g) Output 6

(c) Output 2

Expert evaluation: methodology

Global indicators

Level of manual editions required to meet the constraints

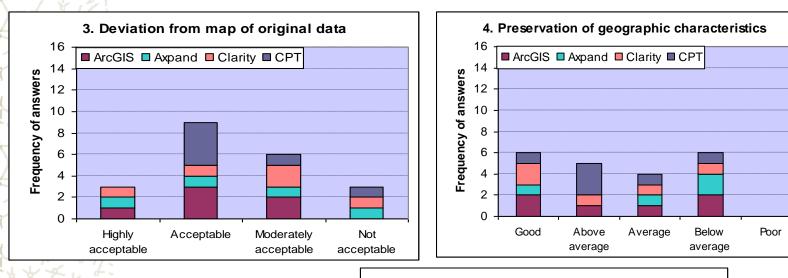
Deviation from initial (ungeneralised) data

Preservation of the geographic characteristics of the test area

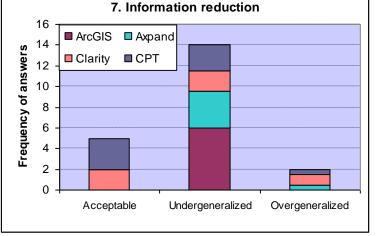
Legibility

Seriousness and frequency of main detected errors

Number of positive aspects


Information reduction (undergeneralisation / overgeneralisation)

Individual constraints assessed in expert survey									
Constraints on one	Constraints on two objects	Constraints on group of							
object		objects							
minimal dimensions	spatial separation between	quantity of information							
121 4 197	features (distance)	(e.g. black/white ration)							
granularity (amount of	relative position (e.g.	spatial distribution							
detail)	building should remain at								
	the same side of a road)								
shape preservation	consistencies between								
	themes (e.g. contour line								
	and river)								



Expert evaluation: example results

Good scores for:

Lower scores for:

AC

Overview

Constraints in the EuroSDR project

Introduction of the project

Role of constraints in requirement analysis

Constraints in evaluation

Topics for discussions

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Topics for discussions (1/3)

- Constraints are well suited to apply to generalisation processes (flexible, distinction between conflict analysis and solution)
- Constraints used to direct the process and to evaluate if output meets specifications: be careful
- Constraints not always good indicator of quality

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Topics for discussions (2/3)

- Results for individual constraints not a good indicator for overall solution:
 - Violation may be intended
 - Constraint may not define the situation well
 - Good results for one constraint may coincide with bad results for another
 - Non-satisfied constraint can be due to missing functionality OR due to imprecise constraint
 - How well does the set of constraints describe the desired output: complete? balanced?

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Topics for discussions (3/3)

- Eurther research
 - More/complete set of/improve constraints
 - Improve formalisation level:
 - How to formalise preservation concepts+accepted change
 Enable notion of threshold values in constraints
 evaluation:
 - Not interesting of a constraint is violated, but if this yields unacceptable situation
 - Making constraints comparable
 - How to aggregate the evaluation to one measure

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

State-of-the-art of automated generalisation in commercial software

March 2010

http://www.eurosdr.net/projects/generalisation/eur osdr_gen_final_report_mar2010.pdf

Temporal project team members Karl-Heinrich Anders, University of Hannover, Germany Jan Haumert, University of Hannover, Germany Nico Bakker, Kadaster, NL Francisco Dávila, IGN, Spain Annemarie Dortland, Kadaster, NL Peter Lentjes, Kadaster, NL Peter Rosenstand, KMS, Denmark Stefan Schmid, University of Zurich, Switzerland Maarten Storm, Kadaster, NL Harry Uitermark, Kadaster, NL Xiang Zhang, ITC, Enschede, NL

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Questions?

Summary of the project available at ica.ign.fr, see workshop 2010 in Zurich: "EuroSDR research on state-of-the-art of automated generalisation in commercial software: main findings and conclusions", 13th Workshop of the ICA commission on Generalisation and Multiple Representation

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris