ICA Tutorial on Generalisation & Multiple Representation 2 July 2011 Paris

ICA

Lecture 5 : Relation modelling and MRDB

Dirk Burghardt Prof. Dr.-Ing. habil. Department of Cartography – Technical University of Dresden

Outline

 Triangulations
 Reactive data structures
 Relation modelling within MRDB

4. Literature

ACI

LECTURE 5 © D. Burghardt, 2011

TRIANGULATIONS

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris LECTURE 5 © D. Burghardt, 2011

Voronoi diagram

- Voronoi polygon a polygon whose interior consists of all points in the plane which are closer to a particular lattice point than to any other
- all Voronoi polygons of a point set build the Voronoi diagram
- construction:
 - from the bisectors of adjacent points
 - each vertex of the Voronoi diagram is obtained as the intersection of exactly three bisectors
 - alternative names
 - Thiessen polygons or Dirichlet tessellation

2 July 2011 - Paris

Delaunay triangulation

- the Delaunay triangulation (DT) refers to a network of several points on a triangle mesh
- the Delaunay triangulation is the dual structure of the Voronoi diagram
 - within the DT two points will be connected in case the corresponding Voronoi polygons have a common line

TIN (Triangulated Irregular Network)

Delaunay triangulation

selected properties

- DT satisfies the circle criterion - no point is inside the circumcircle of any triangle
- maximize the minimum angle of all the angles of the triangles in the triangulation
 any other triangulation generates at least one triangle with an sharp angle

Figure left: the circle criterion is not considered, because point D is situated within the circumcircle of triangle ($\triangle ABC$)

Figure right: the triangles (Δ ABD, Δ BCD) satisfy the circle criterion \rightarrow Delaunay triangulation

construct Delaunay triangulation for the following set of points and the Voronoi polygon around point A

Act

Task

construct Delaunay triangulation for the following set of points and the Voronoi polygon around point A

ICA

ACI

A COM

2 July 2011 - Paris

Task

- triangulation is carried out not only on a set of points, but also on pre-defined edges
 - applications
 - in digital terrain models (e.g. terrain edges or roads)
 - building generalisation

Constraint Delaunay triangulation with consideration of building edges

Example of digital terrain model with Constrained Delaunay triangulation

> Source: Institute for Geodesy and Geoinformation, University Bonn

Example of digital terrain model with Constrained Delaunay triangulation

> Source: Institute for Geodesy and Geoinformation, University Bonn

textured terrain model

Constraint Delaunay triangulation with consideration of road axes

generalization of terrain model by eliminating triangle edges below a sharpness threshold

derivation of a new contour line based on CDT of existing contour lines and terrain points (Li et al. 1999)

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION

Further applications of Voronoi, DT and CDT

- extraction of middle axes (skeleton) of polygons or linear objects
- 🕹 cluster detection
- determining neighbouring objects (non-metric) by searching through related triangles

middle axis and weighted middle axis as merging boundary (Jones et al. 1995)

new allocation of eroded area

skeleton based on Constrained Delaunay triangulation (Haunert & Sester, 2008)

REACTIVE DATA STRUCTURES

- BLG-tree: Binary Line Generalization (Oosterom, 1991)
- tGAP-tree: topological Generalized Area (Oosterom, 2005)
- reactive conflict graph (Petzold, 2003)

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

LECTURE 5 © D. Burghardt, 2011

Binary Line Generalization (BLG-tree)

BLG-tree (Oosterom, 1991) based on Douglas-Peucker algorithm for line simplification

the use of hierarchical data structure allows the scale-dependent representation of linear objects with varying degrees of detail in real time (on-the-fly)

topological Generalized Area Partitioning

۱CA

ACI

Reactive conflict graph

- data structure for the storage of potential conflicts during automated label placement (Petzold, 2003)
- 🕹 structure:
 - nodes⇔labelledobjectsedges⇔potentialconflicts
- botential conflicts are scale dependent
 - scale interval [lower boundary, upper boundary]
- 🎸 2 phases
 - pre-processing: creation of reactive conflict graph
 - interaction phase: usage of data structure

Reactive conflict graph: example

- 3 dimensions:
 - two spatial dimensions
 - third dimension (z-axis): scale
- request:
 - map extent
 - scale
- result:
 - static conflict graph adapted on scale

RELATION MODELLING WITHIN MRDB

ACI

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris LECTURE 5 © D. Burghardt, 2011

Relation modelling within MRDB

Multiple representation

Why does different representation exist respective redundant storage of data?

- b no information about the existence of already collected data
- different requirements of application, both in terms of semantic and technical aspects
 - phenomena can be described as an independent objects or through attributes as part of higher class objects (e.g. railway with 3 tracks)
 - information can be coded differently (different coordinate systems)
 - modelling differences (e.g. river can be modelled as area object or as line object; city as polygon or point, ...)

Multiple representation database

Definition Multiple Representation Databases

The term "multiple representation database" refers to a database structure in which several representation of the same geographic entity or phenomenon, ... are stored as different objects in database and linked. (Sarjakoski, 2007)

Advantages and usage of a MRDB

- supports effective data management, avoids storage of duplicated data sets
- quality checks and quality improvement of data sets (consistency)
- basis for automated, incremental updates
- supports spatial analysis
- extended usage scenarios in digital and mobile cartography (e.g. adaptive zooming)

MRDB in cartography

at the NMAs different representation are related to traditional map series

Feldmann and Kreiter (2006)

ICA

MRDB in cartography

at the NMAs different representation are related to traditional map series

1:25'000

1:50'000

1:200'000

Source: Landeskarte der Schweiz, swisstopo

MRDB in car navigation

Generalization of Road Network for Embedded Car Navigation System, PhD thesis, University Munich 31

۱CA

Relation modelling within MRDB

- type of relations modelled within MRDB is still an ongoing research topic
 - current approaches distinguish three types of relations:
 - vertical relations
 - 2. horizontal relations
 - 3. temporal / update relations

- Definition Vertical relations (VR) connect objects, which represent the same real world phenomena at different resolutions or Level of Detail (LoD) on a defined time stamp
- taking the assumption, that details and objects will be preserved or removed at smaller scales \rightarrow a modelling of 1:1, n:1 and 1:0 relations would be sufficient
 - in the simplest case a connection through primary key and foreign key could be realised without introducing an explicit relation
- working with real data shows, that it is necessary also to model n:m-relations
 - thus explicit modelling of vertical relations as concrete instances becomes essential useful extension
 - additional meta information about applied generalisation operators can be stored as attributes of the vertical relations

API

options for linking remove objects between different level of detail (LOD)

no linkages

alternative to Hampe (2007) 1:0 vertical relation connection with neighbouring object of the same object class (e.g. outgoing side street) connection with object they go up (e.g. outgoing street to settlement area)

Source: HAMPE, M. (2007), Integration einer multiskaligen Datenbank in eine Webservice-Architektur, PhD thesis, University Hannover

Characteristics

- an essential part of MRDB
- store meta-information of generalisation operators and parameters
- support automated update
- improves data quality by comparing consistency
 - provides analysis functionality across all resolutions

relation attributes, meta information


```
VERTICAL-RELATION / INTER-RESOLUTION-RELATION:
id: 0
origin: ID: 20; GenObjectClass: "geb-goldkueste3"
target: ID: 52; GenObjectClass: "geb-goldkueste3"
genSequence:
--id: 0
--consideredObjs:
--genOperation:
----id: 0
----genOperator:
-----id: 30
-----name:typification
-----description:Typification Generalisation
-----parameterDescription: [
-----Number of remaining objects; 10
-----Percentage of remaining objects; 60
    ----Minimal distance between remain. Obj.; 10.0
    ----consider number; false
-----consider percentage; true
-----consider minimal distance; false
----1
----parameter: 10; 50; 10.0; false; true; false
--resolutionRelation: 0
```


ICA

ACI

- Definition Horizontal relations (HR) represent groupings of objects within the same resolution or level of detail
- this way an additional characterisation of objects through their neighbourhoods (geometric, semantic), also referred to as context modelling
- the degree of horizontal relations can vary between 1 ... n, depending on the number of participating objects
 - a special case is the degree 1, e.g. if only one object is contained within a partition
 - the number of horizontal relations is not limited the decision for an explicit modelling depends on
 - application and use of HR
 - effort to produce the HR on-the-fly

context modelling

context modelling

examples

context modelling

examples

partonomic relations

context modelling

examples

- partonomic relations
- neighbourhood relations

context modelling

examples

- partonomic relations
- neighbourhood relations
- structural relations

context modelling

examples

- partonomic relations
- neighbourhood relations
- structural relations
- semantic relations

Derivation of horizontal relations – example of detecting building alignments

- focus on buildings situated near linear objects
- pre-selection with buffer operation
- evaluation of homogeneity based on similarity measures (size, shape, orientation, neighbourhood)

Homogeneity of building alignments

- Calculation of individual measures for each building
- Calculation of variations within one group, e.g. maximum deviation from the mean
- $\sigma_{\max}(A) = \max(A_{\max} A_{\max}, A_{\max} A_{\min})$
- Comparison of deviations between different groups

Homogeneity of building alignments

1CA

AC

۱CA

AC

Automated typification for digital topographic map 1:50k (DTK50) with horizontal relations

ICA

AC

Generalisation example

without

with

explicit modelled alignments base on horizontal relation

Where next

- we have to make tools for the creation of triangulations, auxiliary data structures and explicit relations more accessible
- inter research on the usage of vertical relations required
 - e.g. for incremental updates
- utilisation of horizontal relations for the modelling of context
 - implementation through generalisation operators required \rightarrow generalisation of object groups
 - utilisation within the agent framework through meso agents
 - interplay between multi representation databases with fixed scales and vario scale data structures
 - usage of vario scale data structures for continuous zooming

References

- Bader, M., Barrault, M. and Weibel, R. (2005). 'Building displacement over a ductile truss', International Journal of Geographical Information Science, 19, pp. 915–936.
- Bader, M. (2001). 'Energy minimizing methods for feature displacement in map generalization', PhD Thesis, Department of Geography, University of Zurich.
- Bader, M. and Weibel, R. (1997). 'Detecting and resolving size and proximity conflicts in the generalization of polygon maps', In: Proceedings, 18th International Cartographic Conference, Stockholm, Sweden. pp. 1525-32.
- Bobzien, M., Burghardt, D., Petzold, I., Neun, M. and Weibel, R. (2008). 'Multi-representation databases with explicitly modelled horizontal, vertical and update relations', Cartography and Geographic Information Science, 35, pp. 3–16.
- Burghardt, D.; Petzold, I. and Bobzien, M. (2010). 'Relation Modelling within Multiple Representation Databases and Generalisation Services', The Cartographic Journal 47(3): 238-249.
- Burghardt, D. and S. Steiniger (2005). 'Usage of Principal Component Analysis in the Process of Automated Generalisation', In Proceedings of 22nd International Cartographic Conference, A Coruña, Spain, CD-ROM.
- Devogele, T., Trevisan, J. and Raynal, L. (1996). 'Building a multiscale database with scale-transition database', in Advances in GIS Research II, ed. by Kraak, M. and Molenaaar, M., pp. 559–570, Taylor & Francis, London.
- Feldmann, H.-U. and Kreiter, N. (2006). 'Neuaufbau der schweizerischen Landeskarte: Inhalt und Kartengrafik', Kartographische Nachrichten, 3, pp. 115–121.

References

- Gong, H. (2011). 'Generalization of Road Network for an Embedded Car Navigation System', PhD thesis, Technical University Munich.
- Hampe, M. (2007). 'Integration einer multiskaligen Datenbank in eine Webservice-Architektur', PhD thesis, University Hannover.
- Hampe, M., Anders, K.-H. and Sester, M. (2003). 'MRDB applications for data revision and real-time generalisation', in 21st International Cartographic Conference, pp. 192–202, Durban, Aug 10–16.
- Haunert, J.-H. and Sester, M. (2008).). 'Area Collapse and Road Centerlines based on Straight Skeletons', Geoinformatic 12, pp.169-191.
- Jones, C. B., Bundy, G. L. and Ware, J. M. (1995). 'Map generalization with a triangulated data structure', Cartography and Geographic Information Systems, 22, pp. 317–331.
- Li, Z. (2007). 'Algorithmic Foundation of Multi-Scale Spatial Representation', CRC Press, Taylor & Francis. Petzold, I., Gröger, G. and Plümer, L. (2003). 'Fast Screen Map Labeling - Data-Structures and Algorithms', Proceedings of the Durban ICC 2003, South Africa, pp. 288-298.
- Sarjakoski (2007). 'Conceptual Models of Generalisation and Multiple Representation', In: Ruas, A., Mackaness, W. A. and Sarjakoski, L.T. (eds.). Generalisation of Geographic Information: Cartographic Modelling and Applications, Series of International Cartographic Association, Elsevier, pp. 161-175.
- van Oosterom, P. (2005). 'Variable-scale topological data structures suitable for progressive data transfer: the GAP-face tree and GAP-edge forest', Cartography and Geographic Information Science, 32, pp. 331–346. van Oosterom, P. (1991). 'The Reactive-tree: a storage structure for a seamless, scaleless geographic database', In Proceedings of Auto-Carto 10, pp. 393-407.

ACI

Summary

Data integration

several degrees of data integration can be distinguished

- integration of meta data:
 - standardised catalogue will help with selection of appropriate data set
- integration of semantic:
 - an integrated schema will be defined, which unifies the semantic of the different representations
 - additional rules has to be derived to enable an automated transfer according to the integrated schema
- complete integration:
 - through semantic integration only the schemata are combined within a common data model, objects which represent the same real world phenomena are not connected
 - with complete integration these objects will be identified and connected through explicit relations (links) within the database

Source: DEVOGELE, T., TREVISAN, J., RAYNAL, L. (1996),

Building a multi-scale database with scale-transition relationships. In: Advances in GIS Research II: Proceedings 7th International Symposium on Spatial Data Handling.

collapse of a polygon to a skeleton through centers of triangle circumcircles

collapse of a ribbon-shaped object to a skeleton through the centers of triangle edges connecting opposite sides

graphic exaggeration of a concave polygon based on displacement vector of triangle nodes

middle axis and weighted middle axis as merging boundary

(Jones et al., 1995)

(Bader & Weibel, 1997)

new allocation of eroded area

adopt merge of natural objects

displacement buffer around an arbitrary object

derivation of a new contour line based on CDT of existing contour lines and terrain points

generalization of terrain model by eliminating triangle edges below a sharpness threshold

