ICA Tutorial on Generalisation & Multiple Representation 2 July 2011 Paris

Lecture 6 : Multi-agents within automated generalisation (30 mins)

Cécile Duchêne COGIT Laboratory – IGN France

۱CΔ

The content of this presentation is partly based on a paper –under submission– written with G. Touya, J. Gaffuri, P. Taillandier, A. Ruas and J. Renard

Outline

Multi-agent systems

Why to use agent modelling for generalisation?
 Principles of agent modeling for generalisation
 Overview of existing agent-based generalisation models

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

Multi-agent systems

Agent: an entity

Guided by a goal to reach

[Weiss 1999]

- Situated in some environment
- Having capacities of perception, deliberation, action, communication
- ≈ object + expert system

Wulti-agent system: system composed of several interacting agents

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Multi-agent systems: applications

- Simulation of complex phenomena
 - Ant colonies, human cells, town development, pedestrian moves...
- Complex problem solving
 - Among which constraint-based problems
- 😼 General idea:

- Paris

- Each agent is rather simply modelled
 - Perceives a part of the « world », a part of the problem
 - Simple behaviour / knows a part of the solution

© C.Duchêne. 2011

Outline

Multi-agent systems

Why to use agent modelling for generalisation?

- Principles of agent modeling for generalisation
- Overview of existing agent-based generalisation models

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

Giving autonomy to objects

- Generalisation =
 - complex problem
 - distributed over the map space
 - local, context dependent decisions to make
 - => good candidate for multi-agent approaches
- 🎸 1990s
 - Multi-agent paradigm growing
 - Step by step, local approach uses OO + expert systems
 - => agents = natural evolution of this approach

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Step by step, local approach

 Objects progressively transformed by
 [Brassel & Weibel 1988; McMaster & Shea 1988]
 Algorithms chosen locally

according to conflicts

Specifications
 [Beard 1991] represented as constraints

Operate at different levels; cycles [Ruas & Plazanet 1996]

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011, Paris

Who are the agents in generalisation?

Sroups of objects

VObjects

- を Parts of objects 🛛 🔿
- The points of the objects
- ...depending on the models
- => The geographic information « generalises itself » (Ruas 1999)

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Outline

Multi-agent systems

- Why to use agent modelling for generalisation?
- Principles of agent modeling for generalisation
 Overview of existing agent-based generalisation models

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

ACI

© C.Duchêne, 2011

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 Paris

1CA

ACI

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 Paris

1CA

ACI

Outline

Multi-agent systems

- Why to use agent modelling for generalisation?
- Principles of agent modeling for generalisation

Overview of existing agent-based generalisation models

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

1CA

ACI

2011 - Paris

The model of [Baeijs 1998]

- Agents = points of the objects; groups of agents
- Known agents = others of the group
- Constraints translated as forces
- Actions = small displacements
- Life-cycle = compute forces, compute displacement, apply displacement

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

The model of [Baeijs 1998] - results

Before

After

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

The AGENT model [Ruas 1999]

- Actions: generalisation algorithms
- Communication: hierarchical

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Building constraints:

P ₂]			
ırea"	GRANULARITY	SQUARENESS	CONCAVITY
2mm² rong	importance: strong priority: satisfaction: advice:	importance: medium priority: satisfaction: advice:	importance: medium priority: satisfaction: advice:

SIZE measure name: "area" current value: goal value: 0.2mm importance: strong priority: satisfaction: advice:

Characterise and Evaluate

Building constraints:

$J \mathcal{M} = J_{1} (X) + J (X) \mathcal{M}_{2} (\mathcal{M}_{2})$			
SIZE	GRANULARITY	SQUARENESS	CONCAVITY
current value: 0.12mm ²			
goal value: 0.2mm² 丿			
importance: strong	importance: strong	importance: medium	importance: medium
priority: strong	priority: medium	priority: low	priority: -
satisfaction: low	satisfaction: low	satisfaction: low	satisfaction: perfect
advice:	advice:	advice:	advice:

Building constraints:

square

rectangle rectangle

$J = \mathcal{S}$ $J = \mathcal{S}$ $J = \mathcal{S}$ \mathcal{S} \mathcal{S} \mathcal{S}			
SIZE	GRANULARITY	SQUARENESS	CONCAVITY
measure name: "area"			
current value: 0.12mm ²			
goal value: 0.2mm ²			
importance: strong	importance: strong	importance: medium	importance: medium
priority: strong	priority: medium	priority: low	priority: -
satisfaction: low	satisfaction: low	satisfaction: low	satisfaction: perfect
advice: enlarge, enlarge to rectance	advice: simplify to	advice: square	advice: -

Building constraints:

sguare

enlarge to simplify to

rectangle rectangle

$I = \{0, 1, 1, 2, \dots, 7, N_n \in \mathbb{R}_n\}$	-		
SIZE	GRANULARITY	SQUARENESS	CONCAVITY
current value: 0.12mm ²			
goal value: 0.2mm ²			
importance: strong	importance: strong	importance: medium	importance: medium
priority: strong	priority: medium	priority: low	priority: -
satisfaction: low	satisfaction: low	satisfaction: low	satisfaction: perfect
advice: enlarge, enlarge to rectang	advice: simplify to rectangle	advice: square	advice: -

The AGENT project [Barrault et al. 2001]

Vates: December 1997-December 2000

Project partners:

- IGN France
- University of Edinburgh
- University of Zürich
- Polytechnical University of Grenoble
- 1Spatial (formerly Laser-Scan)

Used and refined the AGENT model

- New implementation
- Rich prototype with lots of generalisation algorithms
- Improvement of life-cycle [Regnauld 2001]
- Application to urban space and roads intensive testings

> AGENT model well adapted for hierarchical data

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011, Paris

The AGENT project [Barrault et al. 2001] results

Urban space

ACI

Data: IGN France

Adaptatations and uses of the AGENT model

- Application to categorical data [Galanda 2003]
- Defines agents and algorithms suitable for land cover generalisation
- Among actions, a snakes based algorithm
 - => step by step and continuous generalisation combined

Data: SwissTopo

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011, Paris

Adaptatations and uses of the AGENT model

- Industrialisation
- In the Clarity software (1Spatial)
- By customising Clarity in European NMAs:
 - IGN-France,
 - OSGB,

- Demos this afternoon

- NMAs of German Länder,
- KMS-Danemark

ACI

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Adaptatations and uses of the AGENT model

Industrialisation at IGN-France [Lecordix et al. 2005]

Top100 DB

BD Carto

ACI

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011, Paris

The CartACom model [Duchêne 2004]

- Target data: low density, no obvious hierarchy
- Agents: only single objects (micro agents)
- Constraints: shared by two agents (relational c.)
- Known agents: neighbours sharing constraints
- Actions: generalisation algorithms, including displacement away from the neighbours
- Communication: each agent
 - $\frac{1}{7}$ informs the others of its own modifications
 - can ask the others to perform actions

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011, Paris

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

ACI

The model of [Jabeur 2006]

🕹 Agents:

- ~micro, meso + layers
- Have a priority depending on the user's interest
- Constraints: size and proximity
- Known agents: neighbours, container/contained
- Actions: scaling, aggregation, displacement, removal
- Communication: ask for action, ask meso for help

The model of [Jabeur 2006] - results

Has been applied to on-the-fly generalisation with small scale changes

[Jabeur 2006, p. 206]

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

The GAEL model [Gaffuri 2008]

- Agents: micro/meso + fields decomposed into points (TIN)
- Constraints:
 - object/field + internal to field
 - translated into forces on points
- Known agents: sharing constraints + neighbouring points
- Actions: small displacements (points)
- Communications: ask for action; trigger
 - neighbours

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

The GAEL model [Gaffuri 2008] – results

Scale 1:50 000

INITIAL STATE

AFTER BUILDINGS GENERALISATION

AFTER GAEL

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

The CollaGen model [Touya 2011]

Collagen = Collaborative Generalisation

2011 - Paris

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July

Conclusions

- Agent approaches: a distributed vision of generalisation
 - Geo agents know/interact with a part of the space (and other agents)
 - Their constraints are assessed locally
 - Close the OO modelling => « easy to think »
 - . but behaviours/knowledge can still be generic
 - shared by types of agents, customised by specialisation

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Conclusions

Component-based => tolerant to local faults
 Dependent on component quality (algos...)
 Can embed other models

Well suited for cases where decisions should vary locally according to spatial context

Wain disadvantage: complex to parameterise

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

Copyrighted Material PUBLISHED ON BEHALF OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION

GENERALISATION OF GEOGRAPHIC INFORMATION: CARTOGRAPHIC MODELLING AND APPLICATIONS

Copyrighted Material

Edited by WILLIAM A. MACKANESS ANNE RUAS L. TIINA SARJAKOSKI

Also on this topic

Chapter 14 A Prototype Generalisation System Based on the Multi-Agent System Paradigm by A.Ruas and C.Duchêne

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

LECTURE 3 © L. Harrie, 2011

References (1/3)

- **Baeijs C. 1998**. Fonctionnalité Emergente dans une Société d'Agents Autonomes. Thèse de doctorat, Institut National Polytechnique de Grenoble, France, 1998.
- Barrault M., Regnauld N, Duchêne C., Haire K., Baeijs C., Demazeau Y., Hardy P., Mackaness W., Ruas A., Weibel R. 2001. Integrating Multi-agent, Object-oriented, And Algorithmic Techniques For Improved Automated Map Generalization. *Proc. of the 20th International Cartographic Conference*, vol.3, Beijing, Chine, 2001, pp. 2110-2116.
- **Beard K. 1991**. Constraints on rule formation. *Map Generalization : Making Rules for Knowledge Representation*, Buttenfield et McMaster, eds, Longman Scientific and Technical, Harlow, Essex, pp.32-58.
- **Brassel K. & Weibel R. 1988**. A review and conceptual framework of automated map generalization. *International Journal of Geographic Information Systems*, 1988, vol.2, n°3, pp.229-244.
- **Duchêne C. 2004**. *Généralisation Cartographique par Agents Communicants: le modèle CartACom*. Thèse de doctorat, Université Paris 6, France.
- **Gaffuri J. 2008**. Généralisation automatique pour la prise en compte de thèmes champs: le modèle GAEL. thèse de doctorat en sciences de l'information géographique, université Paris-Est, Laboratoire COGIT.

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

References (2/3)

- **Galanda M. 2003**. Automated Polygon Generalization in a Multi Agent System. Dissertation zur Erlangung der Doktorwürde, Mathematisch-naturwissenschaftliche Fakultät, Universität Zürich, 2003.
- **Jabeur N. 2006**. A multi-agent system for on-the-fly web map generation and spatial conflict resolution. *PhD thesis*, Laval University, 2006.
- **Lecordix F., Jahard Y., Lemarié C., Hautboin E. 2005**. The end of Carto 2001 Project: Top100 based on BDCarto® database. 7th ICA Workshop on progress in automated map generalisation, A Coruña, 2005,

http://aci.ign.fr/Acoruna/Papers/Lecordix_Jahard_et_al.pdf.

ð.

- Mackaness W., Ruas A., Sarjakoski L.T. 2007. Generalisation of Geographic Information: Cartographic Modelling and Applications. Elsevier.
- **McMaster R. & Shea K. 1988**. Cartographic Generalization in a Digital Environment: a Framework for implementation in a GIS. *Proceedings of GIS/LIS*'88, San Antonio, Texas, États-Unis, 1988, pp.240-249.
- **Regnauld N. 2001**. Constraint based mechanism to achieve automatic generalisation using agent modelling. *Proc. of 9th Annual Conference on GIS Research in United Kingdom*, Glamorgan, 2001.

ICA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July 2011 - Paris

References (3/3)

- **Ruas A. 1999**. *Modèle de généralisation de données géographiques à base de contraintes et d'autonomie.* Thèse de doctorat, Université de Marne-la-Vallée, France, 1999.
- **Ruas A. & Plazanet C. 1996**. Strategies for Automated Generalization. *Proc. of the 7th International Symposium on Spatial Data Handling*, Delft, Pays-Bas, pp.6.1-6.17.
- **Touya G. 2011.** Le Modèle CollaGen Collaboration de processus automatiques pour la généralisation cartographique de paysages hétérogènes. Thèse de doctorat, Université Paris-Est.
- **Weiss G. 1999**. *Multiagent Systems. A Modern Approach to Distributed Artificial* Intelligence. The MIT Press.

2011 - Paris

CA COMMISSION ON GENERALISATION AND MULTIPLE REPRESENTATION 2 July