
Working paper for ICA Generalization Working Group Workshop, 1999

Title (workshop theme):
Practical Solutions for Specific Generalization Tasks

Author: Dan Lee
Keywords: building simplification, centerline, enriching data, interactive editing

Given the “classic” ARC/INFO GIS software environment, our effort to develop
generalization tools has been based on the existing data model and software structure of
the system. Although the result of generalization is a new set of data, it is usually not
obtained by well-defined straightforward queries as in typical data extraction, but
requires more complicated decision-making The rules guiding generalization vary from
case to case and ways to avoid and resolve conflicts dynamically remain under research.
The practical solutions for generalizing ARC/INFO data, therefore, have become the
combinations of automated processes, Macro-program procedures, and interactive
editing. This paper discusses our experience in deriving generalization solutions and
presents the new tools for simplifying buildings and collapsing road casings to
centerlines, along with post processes.

Strategies of deriving generalization solutions

To provide computer-assisted solutions for generalization, we need to pursue the use of
advanced technology in the mapping industry, reducing or replacing the tedious manual
work in production environment. Our success is measured by how much time is saved
and how much consistency is generated in comparison to the traditional manual
generalization on the user’s end, and by the efficiency in development. Generalization
tasks are comprehensive and interrelated. The following strategies are very important in
defining doable tasks and producing practical solutions: breaking complicated problems
down to simpler solvable problems, automating the process as much as possible and
enriching the output with marked areas and process status, supporting interactive editing,
and defining an overall workflow.

Defining solvable problems

In manual generalization, a cartographer draws the generalized result in context with all
mapped features. Many actions, such as elimination, simplification, aggregation,
displacement, and so on, can happen at the same time as drawing a feature. Attempting
such comprehensive human decisions and actions in full automation would be unrealistic
in today’s digital cartography and drag the development into an endless effort.

Defining a solvable problem in our development means to find a particular area in a
bigger problem in which certain rules can be applied and a decent result can be
accomplished automatically. The automation would result in significant time saving in
real production. Also quite importantly, the implementation must be constrained to a
reachable time frame, for example, a product release cycle.

To distinguish the components of generalization and define solvable problems, we have
divided generalization into nine categories of operation, including simplification,
aggregation, collapse, exaggeration, displacement (Lee, 1996). Each may then be solved
automatically by unique operators along with human interaction. An operator is a
program that utilizes a special technique or an algorithm to produce the best possible
results for a particular generalization task, for example, the operator BENDSIMPLIFY
for simplifying lines (ARC/INFO 7.2.1 release). Unresolved issues are anticipated and
will be revisited and resolved later. Examples of new generalization operators will be
given in later sections.

Automating the process and enriching the output data

A computer program can do no more than what human being tells it to do. Since we lack
full knowledge about generalization cases and rules, we can only program what can be
clearly defined and is technically solvable. The generalization operators usually work
according to user-input parameters and a set of rules. In most cases these globally set
parameters and rules can be adjusted to suit local circumstances, and the generalized
results are satisfactory. However, there can be some areas where the global parameters
don’t apply and the user’s inspections and decisions are necessary or where the
computation and development become too expensive to do. The way of handling these
situations is either making the program interactive for user’s instructions at the question
areas during the process, or marking these areas for post-process.

Enriching the output data is a new concept that comes along with computer-assisted
generalization. It means flagging the remaining problems and reporting information about
the automated process that would help further editing. This approach has the advantage of
not interrupting the automated process, not requiring user’s attention during the
automated process, and giving flexibility to post-processing. The examples in later
sections demonstrate the use of this approach in more detail.

Supporting interactive editing

As part of our current solution to generalization tasks, interactive editing programs, such
as AML (the ARC/INFO Macro Language) scripts, are being made available to help
solve the remaining problems and refine the results. Each of the editing programs
supports certain types of editing associated with a generalization operator and its enriched
output. It invokes the ARCEDIT-based editing environment with a menu-driven interface
and allows the user to queue through each flagged area and apply a unique method to
modify features. Some of these methods are made by putting a series of existing
commands into one menu choice, which simplifies and minimizes user’s involvement,
others by AML programs that compensate what is not offered directly by the existing
tools.

The interactive environment also allows other features to be displayed as references to
help deal with spatial conflicts, topology, and the overall balance of mapped information.
All other editing tools are accessible as well, if needed.

Defining a workflow

A generalization workflow puts all automated or interactive steps into a logical sequence
to accomplish a result and is usually data and scale dependent. For a particular data set,
our experience in supporting a generalization benchmark has set an example of using
such a workflow. The project required that we derive a 1:5000 scale topographic mapping
database from a 1:1000 scale database. Each of the 17 feature layers (building, road,
boundary, relief, and so on) was processed separately. Within each layer a specific
sequence was set to generalize point, linear, and areal features. The results were then
combined into 14 output layers. The post-editing needed was described to the client. With
some modifications, this framework can be applied to other data sets.

A generalization workflow will also need to be tailored to fit various scales. The more the
scale reduces, the more the generalization technique shifts from making local
modifications to making global representations. For example, buildings are represented
individually at large scales. They can be simplified or exaggerated up to certain extent,
but still remain individual. As scale reduces, more and more buildings will be excluded,
collapsed, and displaced; some will become part of urban areas. At very small scales,
buildings, even urban areas will completely disappear; they can only be represented by
location symbols. As a map producer (Pla, 1998) described (summarized by the author):

In generalizing buildings from 1:5000 to 1:10,000 or 1:25,000 scales, the
following options are used:

Extraction of small buildings and replacing them with a minimum symbol
Simplification of the rest of buildings
Exaggeration of special buildings
Other actions, including elimination, and aggregation

When generalizing buildings to smaller scales, 1:50,000, 1:100,000 or 1:250,000,
typically in urban areas, more streets disappear and aggregation of buildings is
more used, besides other options.

A generalization workflow, therefore, is a result of analyzing and understanding the
overall requirements (the theme, resolution, feature relationships and priorities, and so
on), and putting a cartographer’s thinking into the most efficient and logical operations. It
is critical in the completion of a comprehensive generalization task.

In the next two sections, the two newly developed generalization operators,
BUILDINGSIMPLIFY (that reduces details from building boundaries) and
CENTERLINE (that collapses road casings to centerlines) are introduced. The discussion
is focused on defining the solvable parts of the tasks, the enriched output, and the
necessary post-processing.

Simplifying Buildings

Simplifying buildings (footprints) means finding a simpler representation of the original
buildings by reducing details in their boundaries, while maintaining the essential shape
and size of the buildings (Figure. 1). Buildings are generally orthogonal areas, therefore
simplification will preserve and enhance orthogonality (Lee, 1998).

Simplifying buildings is for applications at large scales, where buildings are still
represented individually. This section discusses the complications related to this task and
their solution.

Identifying the solvable task among the complications

Without worrying about spatial relationships, each building can be easily reduced to a
simpler form based on a set of rules. An iterative approach can be implemented to
evaluate the pre-defined conditions and rules one at a time and make modifications to the
geometry accordingly (Lee, 1998a).

However, it is unavoidable that any changes in geometry will cause spatial conflicts,
overlapping or crossing with neighbor features, or being too close to them. With the
existing data model, it is quite difficult to detect and resolve conflicts during the process
to guarantee a conflict-free result. Although in theory a conflict can be resolved within its
solution space, or local region (Peng, 1997), and the displacement of involved features
should gradually descend outwards from the center of the conflict, the implementation
has not been proved to be easy with the current data model. Therefore, we had to define
the limitations and rely on some post-editing.

Additional complications are caused by groups of adjacent buildings. If each building
connected in a group is simplified separately, the shared boundaries may end up
mismatched in the results. If only the outer boundary of a building group is simplified as
a single building, recovering the interior walls is technically quite challenging.

It then became clear that the automatically solvable task is the simplification, with limited
conflict detection, of individual buildings and buildings connected in the simplest ways.
The simplification status will be recorded for later examination and post-processing.

Performing simplification and recording status

A building simplification operator, BUILDINGSIMPLIFY as an ARC command, has
been implemented for the upcoming ARC/INFO release. It reduces extraneous details

Figure 1 Buildings simplified to simpler forms

from building footprints according to two user-input parameters, simplification_tolerance
and minimum_area. All attributes on building polygons are transferred to the output.

This operator recognizes buildings as topologically disjoint, connected with straight lines
near parallel to each other, and connected in more complicated ways. Each separate
building is simplified by itself. Buildings connected with straight lines are simplified as a
group. Buildings connected in more complicated ways are not simplified (Figure. 2).

The boundaries of disjoint buildings or buildings connected with straight lines will be
enhanced so that all near-90-degree angles become exactly 90 degrees. Based on the
simplification_tolerance, a building can be simplified by, for example, filling up, cutting
off, or widening isolated small spaces (intrusions or extrusions), straightening a side, but
keeping the measured area roughly the same as the original (Swiss Society of
Cartography, 1987). Any building or a group of connected buildings with a total area
smaller than the minimum_area will be excluded. The maximum degree of simplification
is reached when a building is reduced to a rectangle (Figure. 3). Since this operator does
not detect and avoid all spatial conflicts, the special REGION feature class is used as the
output that allows overlapping topology in buildings.

Figure 2 Buildings in three types of appearances

Figure 3 Before (left) and after (right) simplification

The program records the status of each building in the output by an attribute item,
STATUS. A separate building will have a STATUS value of 1 if it is completely
simplified. If a spatial conflict is found during the iterative process, the building will not
be simplified further and will receive a STATUS value of 2.

If the simplification_tolerance is relatively large compared to the size of the building, the
building will be simplified directly to a rectangle centered at its own center of gravity.
The area will remain the same. The sides of the resulting rectangle will be the same ratio
as the sides of the bounding box aligned to the longest side of the original building
(Figure. 4). If the resulting rectangle contains a side smaller than the simplification
tolerance, the building will have a STATUS value of 3.

For buildings connected with straight lines, simplification will be limited to simple rules
only. These buildings will have a STATUS value of 4. And finally, buildings connected
in a complicated way will have a STATUS value of 5.

The output will contain another new item, BLDGGROUP. This item stores a unique
value for each group of connected buildings. A single building will receive a
BLDGGROUP value of zero. This item is used in checking conflicts among buildings
and groups of buildings.

Locating spatial conflicts

Once buildings are simplified, an overall conflict detection among them can be done
automatically by another new ARC command, FINDCONFLICTS. This program takes
the simplified buildings as input and finds where they overlap or are too close to each
other based on a specified distance and on the BLDGGROUP information.

To find the spatial conflicts, region-buffers are created around each building or group of
connected buildings. Overlapping buffers indicate a conflict. An output will then be
produced, storing these region-buffers with an item FREQUENCY for polygons. A
polygon gets a FREQUENCY value of 2 or more according to how many region-buffers
overlap (Figure 5). All non-conflicting areas receive a FREQUENCY value of 1.
Buildings connected in one group are not considered as conflicting with each other. Only

Figure 4 Building simplified directly to a rectangle

the outer boundary of such a group is checked with neighboring buildings or groups of
buildings.

Interactively resolving conflicts and refining the results

Given the simplified buildings with information about the status and conflicting areas, the
post-editing is easier. An interactive program has been developed to invoke the
ARCEDIT environment with a menu-driven interface. It allows the user to queue through
each conflicting area and resolve it interactively. Two unique tools, move and delete as
menu choices, were created that enable moving and deleting buildings as regions and
maintain the region topology. The user can also easily select buildings according to their
STATUS values and refine the result.

Collapsing Road Casings to Centerlines

Collapsing road casings to centerlines means finding the single-line representation of the
casings based on specified width tolerances, while preserving proper connectivity (Lee,
1998b). It is another typical generalization problem that different algorithms
(Christensen, 1999; Thomas, 1998) can be applied to solve the essential task, but a fully
automated solution for dealing with real world data can be a great challenge. This section
describes our approach, again including an automated process and post-editing.

Analyzing the nature of the problem and defining the solvable task

Road casings are collected and extracted in many different ways depending on user’s data
model and standards. What make the centerline problem more complicated than it seems
include some confusing situations in road casings, difficult decisions on complex
intersections, and single-line roads and wide areas mixed in data.

Figure 5 Finding spatial conflicts by buffering

The first thing to do in deriving centerlines is to differentiate the inside of the casings,
where the centerlines should be, from the spaces between them. If the casings
representing a connected road network form a closed polygon, then it would be easy to
use the inside of the polygon to guide the centerlines. But casings are not normally
collected that way and it is not easy to either make such polygons or find the inside areas
without such polygons or other references automatically. It is especially confusing when
a number of casings run parallel with their widths within the specified width range or
when casings have similar widths as the spaces between them.

Simple road intersections, such as a “T”-shaped or a “+”-shaped intersection, are easy to
recognize and to solve automatically, while arbitrarily shaped intersections (Figure 6)
need more rules to guide the way to connect them. The derived centerlines may not
always connect nicely at one point. They need to follow priorities and connect in certain
order. For example, at a three-way intersection, the two centerlines that are almost on a
straight line or near perpendicular are connected first and then the third centerline can be
projected or extended to the first connecting line. Applying the similar logic, it is possible
that at a multiple-way intersection, all centerlines get connected, but the connection can
be unsatisfactory because some lines can be projected too far or too many connecting
points are produced. To certain extent, rules can be made to further refine and adjust
these details, but some extremely complicated intersections may need human inspection
and decision to help solve them.

Ideally, casings represent the edges of roads. But quite often the casings also follow the
edges of wide areas, such as parking lots, open areas, or unusually shaped cul-de-sacs,
and single-line roads may be included in the same data as well. These features may not be
attributed differently and it is not a trivial job to automatically recognize them so that
centerlines can be produced and connected to them properly.

Our goal was to provide a generic solution without restrictions on the input data. We
defined an approach that uses an automated program to create centerlines and simple
intersections (up to four-way intersections), and yet requires post-editing to resolve the
remaining intersections, to remove unintended centerlines, and to make corrections in
other areas marked by the program.

Figure 6 Arbitrarily shaped intersections

Creating centerlines and necessary attributes

A new operator, CENTERLINE as an ARC command, has been implemented also for the
upcoming ARC/INFO release. It produces centerlines according to two user-input
parameters, maximum_width and minimum_width.

The CENTERLINE program scans and separates the data in two directions, horizontal
and vertical, and creates centerlines where casing width is within the specified range. It
then evaluates each intersection and connects those that fit the rules. Casings with the
width beyond the specified range and single lines not used to create centerlines are copied
to the output data such that the road network won’t be broken.

The output data contains an item LTYPE (line-type) that differentiates centerlines from
unresolved areas. If the width of the input data is relatively constant and the intersections
are simple, a complete centerline result can be produced, that is, LTYPE = 1 for all
resulting lines. Otherwise, unused lines (such as a single casing or casings with a width
beyond the specified range) and outlines around complicated intersections will be flagged
with a LTYPE value of 2 for editing them further (Figure 7).

Four other new items, LL# (left casing record number), RL# (right casing record
number), L-ID (left casing ID), and R-ID (right casing ID), also come with the output
data to relate the centerlines to their source casings for attribute transfer.

Interactively resolving intersections and refining the results

An AML program has been developed to invoke the ARCEDIT environment with a
menu-driven interface. It allows the user to queue through each LTYPE 2 area and

Figure 7 Results of CENTERLINE with unresolved
 intersections and wide roads flagged.

Unused lines (casing width
beyond the specified range)

Outlines of complicated
intersections

resolve the problem interactively. A few most needed editing tools, such as remove an arc
(line), extend an arc, and add vertices, are included in the menu choices. A unique tool
was created to automatically join a set of selected lines at a user-specified intersecting
point. Other special tools may be added in the future to incorporate more advanced rules
and make the editing even easier.

Conclusions

Our experience in deriving solutions for building simplification and creating road
centerlines has led us to believe that properly balancing the automated process and
interactive editing is a practical way of solving complex generalization problems
reducing labor work significantly. For example, as already proved by two evaluation tests
(Litton, 1998 and Oxenstierna, 1998), the CENTERLINE solution can replace existing
procedures and generate 70-80% time saving in production.

We are also defining and implementing a number of other generalization operators,
including aggregation of general area features, such as vegetation, and buildings in
specific, collapse of buildings to points with orientations, and collapse of area features,
such as lake, to single-line presentation. I would like to present our preliminary
approaches in solving these problems at the Workshop and share discussions with others.
As more and more of these generalization operators become available, the overall
generalization workflow will continue being simplified, more labor work replaced, and
more consistent results produced. Since the object-oriented technology is being used in
defining our future products, it certainly will benefit generalization processes. We are
looking forward to developing new tools based on stronger and richer data model and
filling up more blanks in the area of digital map generalization.

Reference

Christensen, Albert H. J., 1999, “Cartographic Line Generalization with Waterlines and
Medial-Axes”, Cartography and Geographic Information Science, Vol. 26, No. 1, p. 19-
32.

Lee, Dan, 1998a, “Simplification of Buildings”, ESRI internal design document.

Lee, Dan, 1998b, “Creating Centerlines from Road Casings”, ESRI internal design
document.

Litton, Adrien, March 3, 1998, On CENTERLINE approach, email notes.

Oxenstierna, Andreas, March 2, 1998, On Centerlines, email notes.

Peng, Wanning, 1997, “Automated Generalization in GIS”, ITC Publication Series, No.
50, p. 42.

Pla, Maria, Jan. 7, 1999, On building generalization, email notes.

Swiss Society of Cartography, 1987, “Cartographic Generalization – Topographic Maps”,
Second Edition.

Thomas, Federico, 1998, “Generating Street Center-Lines from Inaccurate Vector City
Maps”, Cartography and Geographic Information Systems, Vol. 25, No. 4, p. 221-230.

