Twelve Computational Geometry Problems

from Cartographic Generalization
(draft)

Marc van Kreveld
marc@Ocs.uu.nl

Abstract

The topic of automated cartographic generalization is discussed as a source of open
problems for computational geometers. To this end, an introduction in the geometric
conditions and operations that occur is given first. Then these conditions and operations
are formalized, leading to various different problem statements for the design of algorithms
that perform a step in cartographic generalization.

Note: This paper is in preliminary form; it was written for computational geometers
rather than GIS researchers, and the list of references must be extended. Figures are also
in preliminary form (the html-version doesn’t have boldface lines where it should).

A preliminary copy this paper will be distributed during a Dagstuhl Seminar on Com-
putational Geometry (March 1999). Hopefully, this will invoke research on these prob-
lems, and the author has requested be informed about any progress and results. In a
more polished form, hopefully with references to new results, approaches, ideas, problem
statements, it will be submitted to a workshop on automated generalization, where the
author would like to report on progress made since then.

1 Introduction

Automated map generalization is one of the most interesting topics in Geographic Information
Systems research. There are many issues on what must be done to visualize or use geographic
data at a smaller scale than the source data itself. One is how to organize the data into a
multi-scale database to allow for generalization. Another is when and how to detect whether
generalization is necessary. A third issue is the design of operators that perform a little piece
of the generalization task. Three books and many papers have been written on various issues
of cartographic generalization [4, 12, 14]. A survey paper on generalization methods also
exists [22].

This paper reviews briefly some of the ideas and concepts developed in the context of
automated generalization. The focus is on generalization operators and their design; it is the
subarea where computational geometry can have an important contribution. In this paper
twelve problems arising in automated cartographic generalization are formulated, with the
aim of invoking more research on the topic from the computational geometry community.

!The author would appreciate it very much if progress or results on any of the problems are communicated
to him too, in one form or another.



Phrasing problems as computational geometry problems requires a complete specification
of conditions and criteria. In the GIS literature it is common to say that generalization should
be done when imperceptibility, coalescence, or congestion (defined later) occurs. This is done
by a conflict detection routine [2]. This paper takes a similar approach but formulates various
generalization operators as computational problems where certain restrictions must be met
and other conditions are optimized. This leads to several interesting computational geometry
problems. But we don’t claim that the given formulations are the best possible, in the sense
of being appropriate and easy to compute with. For the related problem of line simplification,
various geometric conditions and measures have been given before [11, 9].

2 Preliminaries

An operator that performs a piece of the cartographic generalization process makes changes
to a detailed representation to obtain a representation that is more suitable at a smaller map
scale. Changes are in some sense a lie about the actual situation. Map features may have
been eliminated or shown in a simplified shape. Although changes are necessary, they must
obey certain constraints. At the same time, the changes serve a generalization objective. This
gives a couple of conflicting issues which we formalize first. (A more extensive description of
the concepts and ideas in this section is given in [12, 16, 18] and other texts.)

Need of generalization. There are several reasons to perform generalization—apply a
generalization operator—to a particular situation on a map. One of them is imperceptibility.
This occurs when a feature becomes so small on the map at reduced scale that it can hardly
be seen, or recognized. Either feature should be removed, if it is not so important, or it should
be enlarged, if it is important. Imperceptibility can apply to a feature as a whole, but also
to a part of a feature.

Coalescence occurs when two map features seem to touch because their distance is very
small on the map at a reduced scale, which makes it hard see them as non-touching features.
It can also be that on the map, the features really touch caused by the thickness with which
the boundary is drawn. Self-coalescence occurs when a polygonal line seems to touch itself.

Another reason for generalization is to reduce clutter or congestion. If a map shows
many features in large detail at a reduced map scale, the map will appear congested with
information. The overall impression, which is the purpose of maps with smaller scales, can
easily be lost in the detail. Also in specific regions of a map it can be necessary to reduce
detail, just to make the reduction in detail roughly the same everwhere on the map.

Means of generalization. The various operators that are used in the generalization pro-
cess can change a map in the following ways (or perhaps in a combination).

e Selection (or the inverse, elimination).
e Displacement (translation, perhaps in combination with a slight rotation).

e Reshaping. Among which smoothing, simplification, exaggeration, and enhancement of
a polygonal line.

e Amalgamation. When two or more polygons close together are merged into a larger
polygon.
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Figure 1: Example of cartographic generalization with the effect of various operators shown:

point conversion for the city, area collapse (partial) for the river, amalgamation of polygons
at the top left, typification of the symbols below the river, and selection of roads.

e Typification. When a set of features is displayed by a different set that can be considered
representative of the situation. Usually, the new set contains fewer but larger features.

e Exaggeration or enlargement. When a feature is imperceptible or simply too small for
its importance, it can be enlarged.

e Point, line, and area conversion. Point conversion is when a small area is symbolized
to a point (e.g., a city); line conversion is when a thin region (river, road) is collapsed
to a polygonal line or curve; area conversion is when a set of points are displayed as a
polygon (a set of oil wells becomes an oil field). Point and line conversion are sometimes
called collapse.

Elimination can consist of removing a separate map feature, but also removing a face from
a subdivision. In this case the region must be merged to one or more neighboring regions,
which are reshaped. This operator is also called dissolution.

Other operators exist, for instance segmentation, aggregation, refinement, and classifica-
tion. Simplification is considered generization too if the objective is not to reduce the number
of data points, but to redefine a shape.

Restrictive conditions. Certain constraints must be satisfied in specific situations of gen-
eralization. These constraints may depend on the type of feature. A forest and an island can
both be represented as a polygon, but different considerations apply when generalizing. The
following conditions can occur:

e Minimum area of a polygon (no imperceptibility).
e Minimum separation between non-adjacent features (no coalescence).

e Minimum width of a polygon (no self-coalescence).
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e Maximum number of features in a limited area (no congestion).

e Maximum total length of boundaries in a limited area (no congestion).

Maintain the topology (e.g., of a subdivision when its faces are generalized).

Maintain the global shape, size, orientation, position, relative size of features.

The latter class of conditions states that certain aspects must be met more or less, without
a firm statement. The other four conditions can be considered as firm: no polygon on the map
should be less than 0.5 mm?, no two features should be closer than 0.1 mm? or they will seem
to touch, and no polygon should be more narrow than 0.1 mm? or the opposite boundaries
will seem to touch.

There are more restrictive conditions than were listed above. Some conditions are needed
for semantics or consistency. For example, when contour lines are smoothed during gener-
alization, one must make sure than any river crossing the contour lines still flows downhill
everywhere. As a second example, if a city is collapsed from an area to a point symbol, then
every other city of the same or lesser size should also be collapsed. Restrictive conditions
beyond the geometric ones are given, for example, by Ruas and Plazanet [17], Weibel [23].

The type of width or narrowness meant in the preceding text is not the ‘largest width’
but the ‘narrowest passage’. We give a definition of coalescence that more or less captures
the notion of narrowness in the next section.

Smallest lie or maximum generalization. Within the limits given by the restrictive
conditions, an operator should usually do as little reshaping or displacement as possible. The
operator introduces a small lie about the real world situation, and this lie should be no larger
than necessary. In some situations, however, it can be desirable to reduce clutter as much
as possible within certain limits. The resulting problems are in some sense dual: given a
maximum allowed change or lie, perform as much generalization as possible.

Depending on the means of generalization, change can be measured in various ways. For
displacement, it is obvious to minimize the displacement distance. For selection, it is natural
to try to choose the largest subset under certain constraints. For reshaping, it is best to
keep the original size and shape as much as possible. To this end, a similarity measure is
needed [1, 7]. For example, when a polygon should be reshaped to meet certain criteria, one
could look for the polygon satisfying these criteria which has the minimum area of symmetric
difference with the original polygon, or minimum Hausdorff distance. Often is it desirable to
maintain the area of a feature, in which case area of symmetric difference is a better measure.

Some of the reasons why generalization is needed suggest different optimization criteria.
To reduce congestion as much as possible, selection of a smallest subset that can serve as
representative can be the optimization criterion. Or, one could reshape a polygonal line to
one with smallest length, and a polygon to one with smallest perimeter.

3 Definitions of imperceptibility, coalescence, and congestion

Three geometric conditions that should be overcome by generalization operators have been
identified, but not yet quantified. Imperceptibility can simply be stated as requiring a mini-
mum area of areal map features, and a minimum length of linear map features. Point features
are always symbolized, possibly to a point symbol, and the size of the symbol that goes with
the map scale prevents points from being imperceptible.



Coalescence is another condition that can occur when generalizing and which must be
resolved. Since coalescence is a geometric condition, it requires a geometric definition. For
two features like polygons, displayed with a boundary of a certain thickness, the obvious
condition giving rise to coalescence is that the boundaries are within a certain very small
distance. This distance depends on the thickness of the boundaries and the desired minimum
separation between displayed features.

Figure 2: Self-coalescence for a curve.

Coalescence can also occur for a single feature like a polyline or the boundary of a polygon;
this is called self-coalescence. This case is not so easy to define appropriately. A polyline
should not come so close to itself that it almost touches, nor should it contain such sharp
turns that a thicker line appears locally (see Figure 2, left). Similarly, a polygon’s boundary
can seem to touch itself or contain sharp turns. The idea is to define that two points p,q on a
polyline or boundary coalesce if they are closer than some distance ¢ in the Euclidean sense,
but further than some distance v when measured along the polyline or boundary. Along
the boundary of a polygon, distance can be measured clockwise or counterclockwise from
p to g. Both distances should be at least 7y, which can be chosen to be, say, 3 times the
Euclidean distance between p and ¢q. The value of § will depend on the line thickness too.
The requirement rules out sharp turns as well, except when at least one of the segments
making the sharp turn is short.

The definition just given may be difficult to work with, because for any point on the
boundary of the polygon there can be infinitely many other points on the boundary with
which it coalesces. A possibly more workable definition is considering only pairs of points p, ¢
on the boundary for which there exists a midpoint r interior to P such that p, g are the points
on the boundary closest to r. The remainder of the definition of coalescence is the same. It
follows that r lies on the Voronoi diagram of the edges and vertices of P.

The condition that a polyline can seem thicker than the width with which it is drawn can
be stated by measuring locally the area a polyline with a certain width has. For instance,
one can require that every circle with radius twice the polyline width may be filled by the
polyline for at most, say, 70% of its area. As a variation, one could only consider circles whose
center lies on the polyline (see Figure 2, right). This rules out that a polyline can seem much
thicker, and also sharp angles of two line segments of at least some length.

We will not formalize the notion of congestion, but simply remark that reducing the
number of features and reducing the length of a polyline or curve reduces congestion. A
possible definition has been given by Jansen and van Kreveld [8].

The definitions given above may not be the best ones imaginable. For one thing, a



boundary of a polygon can be arbitrarily long in a very small region, for instance some
fractals have an infintely long distance over the curve between any two points. Still, such a
curve isn’t necessarily infinitely congested, nor need it cause self-coalescence. This suggests
that it may be better to replace length of a curve between two points by area of the Minkowski
sum of a small disk and the curve between those points.

4 Twelve problems in generalization

In the next twelve subsections, a problem from cartographic generalization is discussed briefly.
Sometimes, the problem is formulated as a completely specified problem; other problems still
need to have part of the problem statement filled in. The problems are examples of general
generalization problems, with choices made on the conditions and optimizations. So variations
of the listed problems are also of interest. The author of this text has thought about solutions
for a few of the problems listed in this section, but not about all of them. So some problems
may turn out te be simple, others extremely difficult, or even uninteresting.

4.1 Reshape polygon to counter self-coalescence

The first generalization problem states what to do with a polygon when self-coalescence
occurs. This immediately gives rise to the problem of detecting whether self-coalescence
occurs, using one of the definitions of self-coalescence given before. When it occurs, the
polygon can be reshaped slightly so that self-coalescence no longer occurs. We would like to
minimize the area of symmetric difference.

Figure 3: Reshaping one polygon to garantee no self-coalescence.

One can also reshape a polygon to one with minimum perimeter, while guaranteeing that
the (symmetric) Hausdorff distance between the old and new boundaries is at most some
small value e. Small perimeter is used to deal with congestion, but need not resolve self-
coalescence. Requiring that the resulting reshaped polygon has no self-coalescence is a more
difficult version of this problem.

4.2 Reshape two polygons to counter coalescence

To guarantee a minimum separation (no coalescence) between map features, one can change
the shape of those map features. For instance, two polygons may represent two regions with
a different type of land use, and they may be some distance apart. To visualize that two
polygons don’t touch when reducing the scale of the map, a minimum separation is necessary.



This may be obtained by changing the shapes of the polygons. We may want to minimize
the area that is taken from the polygons to guarantee the minimum separation.

When only one polygon should change its shape, it is straightforward how to compute its
new shape. Simply carve all parts that intersect a thickened version of the other polygon,

Figure 4: Reshaping one polygon to garantee a separation.

obtained by applying the Minkowski sum of that other polygon with a disk. When two
polygons may change shape and the total area taken from the two is to be minimized, the
problem is not so simple.

A practical solution is to compute the bisector of the two polygons, compute its Minkowski
sum with a disk, and remove all parts of the polygons intersecting this Minkowski sum. The
amount of area taken from the polygons may be much more than in an optimal solution,
though. It remains to find an optimal solution or a constant factor approximation of it.

Ultimately, the problem can be stated for a set of polygons, some sharing boundaries
and some disjoint. Reshape all to guarantee no coalescence and self-coalescence anywhere,
while maintaining the topology of the subdivision and minimizing the total area of symmetric
difference.

4.3 Displace polygon to counter coalescence

The situation of the problem discussed in this subsection is the same as the previous one. Two
polygons are given and a minimum separation must be guaranteed. Another way to achieve
this, other than reshaping, is to displace one of the polygons. The distance over which the
polygon is translated to guarantee the separation should be minimized.

The obvious way to tackle the problem is to reduce the polygon P to be translated to
a point and the other one, @), to the Minkowski sum P & ) of the two polygons. Then
the problem becomes a motion planning problem for a point p. To guarantee a minimum
separation, we enlarge P & () by taking the Minkowski sum with a disk D of the appropriate
radius, yielding a subset of the plane R = P @& (Q @ D. The point p lies outside P & @ but
outside R. The motion planning problem is to find the nearest point on the boundary of R
to which p can be translated. There are no obstacles in this motion planning problem, but
the target isn’t a single point.

The solution just outlined may be expensive: the Minkowski sum of two polygons with n
and m vertices, respectively, may have complexity ©((nm)?) in the worst case. Does a more
efficient solution exist?

A version of the problem where polygon P may not intersect polygon ) during its transla-
tion is also interesting in the application. In Figure 5, the dark polygon P will be translated



Figure 5: Candidate positions of polygon P after translation.

to the right position P’ in the solution of the problem just sketched. However, it may be
important to keep the intuition that polygon P lies to the left of ). So the left position P”
of the dark polygon may be better, even though it is further from the original position.

4.4 Select subset of points to counter congestion

A collection of symbols close together may cause a lot of clutter on a map. This applies to
point symbols and other symbols. Sometimes it is important for the message of a map that a
region contains several castles, but it is not necessary on smaller map scales to show a castle
symbol for every castle that occurs, when there are many in a small region. A representative

Figure 6: Selecting a subset of symbols to overcome clutter.

subset can be used to convey this message. Figure 6 makes clear that the three dots commonly
used as symbol for a ruin can make a part of a map appear cluttered.

A solution to assure that no clutter of a symbol type occurs is to guarantee a minimum
distance between two symbols of the same type. When two such symbols are two close, one
of them must be removed. While guaranteeing a minimum separation, one may want to keep
the largest subset of symbols with this restriction. Assuming that symbols are points, the
problem can then be seen as maximum nonintersecting subset in a set of unit size disks (or
maximum independent set in a unit disk graph).

It may also be the goal to reduce clutter as much as possible, but while maintaining the
property that every eliminated symbol has a representative within a certain distance from it.



This distance should obviously be chosen larger than the minimum separation distance. The
problem then becomes a cover type of problem.

4.5 Amalgamate polygons to counter coalescence and congestion

Amalgamation is merging two or more polygons into one by adding the area in between [3].
This can be done to cope with polygons that give rise to coalescence over a longer section of
their boundaries. The first problem of this type is: Given two polygons P and (), amalgamate
them into one polygon with no self-coalescence while adding the minimum possible area.

Given two polygons P and (), amalgamate them into one polygon with no self-coalescence
and smallest possible perimeter, under the condition that no point further than some distance
€ from either polygon be added.

More difficult is to solve the problems above and also guarantee that the complement of
the resulting polygon has no self-coalescece. Another problem is to start out with a set of
polygons and amalgamate them into a smaller set of polygons under certain restrictions.

4.6 Partial area collapse to counter self-coalescence

On large scale maps, rivers and roads are displayed as polygonal regions, and the width of
these features can be shown at the right scale. On small scale maps this is not possible any
more, and rivers must be collapsed to curves or polygonal lines. At intermediate scales, rivers
can be partly areal, partly linear. The areal sections of the river show where the river is wide
or even forms a lake.

Figure 7: Partial area collapse.

Given a target map scale, when a river is narrow enough, it can be collapsed to a curve
or polyline, but if it’s wider than some value, it should not be collapsed. It is a good idea
to take two different thresholds wq,ws: below some width w; the river must be collapsed,
between widths wy and wy one has the choice whether to collapse the river or not, and above
width wsy the river may not be collapsed. Under these restrictive conditions, the problem is
to compute the partially collapsed feature such that the number alternations in collapse and
not collapse is minimized. When this is optimized, one may still choose to collapse as large
sections as possible, or as small sections.

4.7 Area conversion to counter congestion

The generalization operator area conversion can be applied to a set of points close together,
giving a polygon [5]. For instance, a set of oil wells can be area-converted to an oil field. The



operator resembles amalgamation of polygons into one new polygon, and a-hulls or shapes
could be used [6, 13].

Here we pose the problem as a cartographic optimization problem with restrictive con-
ditions. Given a set S of points in the plane, determine a set of polygons such that every
point lies in some polygon, there is no coalescence or self-coalescence, and the total area of
all polygons is minimized. One could also add the condition that no point further than some
distance € from all points in S be in any polygon, and minimize the total perimeter of the
polygons.

4.8 Typification in sets of polygons to counter congestion

Typification is one of the more difficult to formalize operators in cartographic situation. The
idea is to replace a large number of small polygons by a much smaller number of larger
polygons, but which have a representative shape and orientation. To formulate the problem
well, the notion of when a set of polygons represents another set well must be formalized. As
in most other problems, it is desirable that the new polygons together have roughly the same
area as the input set. Furthermore, the new polygons may not be imperceptible not have
coalescence.

A possibility of typifying the shape and orientation of a set S of polygons by one new
polygon P is to scale all polygons in S (such that the average area is the same as the area of
P), then translating P to minimize the area of symmetric difference of P and each scaled copy
in S, and adding these. This gives a way to measure the resemblance of P with all polygons
in S, and one can look for the polygon P which minimizes this sum of areas of symmetric
difference.

Different similarity measures give rise to more problems of this type [1, 7]. Also, a formu-
lation of a representative set of polygons for an input set need be found.

4.9 Dissolution in a subdivision to counter imperceptibility and congestion

When a face in a subdivision becomes too small (imperceptible), it can either be enlarged or
eliminated (when there are several small faces of the same type, they could also be amalga-
mated). If a face is eliminated, its area is given to adjacent faces of the subdivision. Because
the eliminated face is usually small, the adjacent faces won’t change much in size or shape.
Nevertheless, it may be necessary to subdivide the eliminated face in a particular way among
its neighbors. It could be that the face is not that small, but simply not so important, or
that several faces of the subdivision are eliminated and one wants to avoid that they disturb
the relative sizes of the remaining faces too much. The problem occurs when generalizing
categorial subdivisions, for instance of soil types.

In Figure 8, most of the small dark faces were dissoluted in the white face, but the two
small dark faces adjacent to the light grey face were added to that face and not the white
face to maintain the relative areas of white and light grey more or less.

The problem of dissoluting one face can be stated as how to divide its area among its
neighbors while maintaining their relative sizes, and at the same time, using short boundaries.
When the subdivision is categorial, the objective is to maintain the relative sizes of the classes
as much as possible.
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Figure 8: Dissolution of small faces in a subdivision.

4.10 Exaggeration amidst other features

Exaggeration is always performed to deal with imperceptibility of a feature or an important
part of it. Here we assume that a polygon is too small to be displayed at the target scale,
but it is important enough not to be eliminated. So it has to be exaggerated.

The best way to enlarge a polygon while maintaining its shape obviously is scaling it.
However, there can be other polygons in the neighborhood with it which would coalesce. The
problem of exaggerating a polygon P then becomes computing a new polygon @) with a given
target area, whcih doesn’t coalesce with any other polygon, and whose area of symmetric
difference with some scaled copy of P is minimum. The center of scaling should lie inside P.

4.11 Exaggeration in a subdivision

When a subdivision has small faces but these may not be eliminated, they have to be enlarged.
For example, when a choropleth map of Europe shows the countries with a color scheme that
shows unemployment rate, also the small countries like Liechtenstein and Monaco must be
visible. On a scale 1:40,000,000 (about 10 x 10 cm for Europe), these countries must be
enlarged to ensure a minimum size. This should disturb the shape and size of neighboring
countries as little as possible, which may be difficult if these neighboring countries were fairly
small themselves. A restrictive condition may be to maintain the topological structure of the
subdivision.

4.12 Typification of a polyline to counter self-coalescence

When generalizing a winding road, curves tend to become so small that they cannot be
visualized. A road with many hairpin turns will appear as a thick line rather than a road
over a steep mountain. It is possible to apply line generalization or simplification and throw
out all turns, but then the road will look like a normal road and not a winding road. To
preserve the character, it is best to reduce the number of turns in the road, but exaggerate
the remaining ones. The most interesting approach of the problem is by Plazanet [15].

A possible problem statement is to compute a curve with an upper bound on its curvature,
with the same angular change to length ratio as the input curve, and with Hausdorff distance
as small as possible to the original curve. An additional constraint should be to avoid self-
coalescence, for example by requiring the complement of the curve to be sufficiently wide.
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Figure 9: Generalizing a road with many curves by keeping a few curves and exaggating them.

4.13 And more ...

There are several other problems of interest. The operator segmentation, which splits a
polygon into two at a thin place, can also be stated as a problem. Sometimes, reshaping a
polygon as proposed in Subsection 4.1 is not possible or would add too much area. In that
case segmentation can be better.

d QPO

Figure 10: Segmentation of a polygon.

In the formulations given in this paper we specified which operator to use in a particular
situation. It is part of fully automated generalization to select the most appropriate operator
as well. Certain problems, like the one on dissolution of a face in a catergorial subdivision,
should be solved by a combination of amalgamation, dissolution, segmentation, and reshaping.

Several problems in generalization include features that have a priority as well, not just
geometric information. For instance, when generalizing road network maps, one should give
preference to keeping the major roads (but it is not the case that road selection by priority
solves the problem) [20, 19]. In road network generalization, junction collapse is also an
operator [10].

In other problems, certain high level structures of the data need be maintained. For
example, when generalizing digital elevation models, it is important to keep the ridges and
river courses roughly the same [21]. Similarly, when selecting a subset of points from a dense
set that has some pattern, this pattern should be maintained.

5 Concluding remarks

The list of problems given in this paper is by no means exhaustive. The development of
automated generalization will benefit from their solution, but will not solve it. The interplay
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of generalization operators, the order in which to perform them, the inclusion of shape de-
scriptors to maintain global shape, the more explicit incorporation of meaning (semantics) to
the map objects, consistency of generalization throughout the map, generalization of complex
structures like elevation models and networks, these are all further issues in generalization,
all of which have been addressed to some extent in the recent GIS literature.

Acknowledgments. The author thanks many people for sharing thoughts on some of these
problems. These are Therese Biedl, Steve Robbins, Frank van der Stappen, Mark de Berg,
Steven van Dijk, and all other people of the applied algorithms research group at Utrecht
University.
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