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Abstract

Categorical data in the form of polygon mosaics is an important and frequent data type in GI Systems. However,
tools and methods which support the automatic generalization of this type of data are not yet well developed.
The work described in this paper is part of a broad initiative at the Geography Department of the University of
Zurich to change this by focusing on measures and methods of spatial analysis which form the foundation of
every generalization task. The goal is to provide formal mechanisms which allow describing all relevant char-
acteristics of datasets with categorical data and respecting semantic information as well. Appropriate measures
are required throughout the generalization process. We need them to identify conflicts, to guide and control
transformation operations and for the evaluation of the results. After a short recapitulation of the cartographic
constraints applicable to categorical data and the repetition of some basic requirements for measures in chapter
2, we start with some conceptual considerations about the potential and limitations of measures in the generali-
zation process in chapter 3. In chapter 4, we present and discuss measures for the above mentioned purposes
and describe procedures for their computation. The measures are classified according to the main characteristic
they represent. Examples show how a measure or a combination of several measures can be used for a specific
purpose in the transformation (generalization) process. Chapter 5 deals with the workflow in a generalization
system from the measures perspective and, finally, chapter 6 presents conclusions and an outlook to the next
steps in this project.

1. Introduction

Categorical data in the form of polygon mosaics or as raster data sets are an important and frequent data type in
today’s Geographic Information Systems. Examples cover a wide range of topics from landuse/landcover maps
over datasets with geological information to maps with political units. While significant progress has been made
in the development of integrated systems for the generalization of topographic maps (e.g. AGENT 2001)
equivalent solutions which are specifically designed for categorical data are still missing.

Research in the field of generalization of categorical data has a long tradition at the Geography Department of
the University of Zurich. A number of papers dealing with various aspects of categorical map generalization
have been published in the last few years (Peter 1997, Bader 1997, Bader and Weibel 1997, Peter and Weibel
1999b). The work described here is basically the continuation of the research project we presented at the ICA
Conference in Ottawa in 1999 (Peter and Weibel 1999a) where we developed a conceptual framework for a con-
straints based approach to categorical map generalization and exploited the potential of procedures involving
transformations of the data model. Building on this general framework we will now continue by extending our
knowledge and understanding of some of its key components, namely measures. We will work with polygonal
data from now on.

The goal of this paper is to develop a comprehensive set of measures which describes all relevant geometric and
semantic properties of selected types of categorical maps and to test them with real data. Measures are of central
importance in a generalization workflow. They are needed in every step of the process: for initial evaluation of
the data and basic structure analysis, to identify cartographic conflicts and to guide and control the transforma-
tion process on the generalization operator and algorithm level as well as for quality evaluation and assessment
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of the results. Since both the measures themselves as well as the form in which they are represented in a gener-
alization system are closely linked with the available operators and algorithms, we will closely cooperate and
coordinate the work with the project of Martin Galanda who is working on algorithms for polygon generalization
(Galanda 2001).

Chapter 2 presents a short recapitulation of the constraints to categorical data, some basic definitions and formal
requirements for measures as well as a classification scheme. Chapter 3 presents conceptual considerations. We
discuss the potential and limitations of measures in a generalization system and answer the question what meas-
ures are useful in what situation and for which types of categorical data. In chapter 4 we define measures for the
purposes mentioned above and show ways for their calculation. Possibilities for the integration of measures in a
generalization workflow are discussed in chapter 5. Finally, chapter 6 provides conclusions and an outlook to
future work.

2. Constraints and Measures – Definitions, Properties and Requirements

This chapter is a condensed recapitulation of the respective chapters in Peter and Weibel (1999b) where we de-
scribe the terms in more detail. Modifications reflect the fact that we now work exclusively with data in the
vector model (polygon mosaics or polygonal subdivisions). Since the terms below will be used throughout the
paper and the constraints to categorical data form the foundation not only of this paper but for the whole research
project, we repeat them here. This should also allow the reader to follow the argumentation more easily. Readers
who are familiar with these concepts can skip this chapter.

2.1 Constraints to Categorical Data

Classification of Constraints
We classify constraints both according to their function and their spatial application scope.

Function:
• Graphical
• Topological
• Structural
• Gestalt

Spatial application scope:
• Object or polygon 1 (micro level)
• Category (macro level)
• Group of objects, region or partition of the dataset (meso and macro level)

Constraints Related to Objects
1. Minimum size (graphical): Objects which are too small must be either deleted or enlarged
2a. Minimum distance (graphical): The distance between consecutive vertices of a polygon outline should not

be less than the minimum visual separability distance
2b. Self-coalescence (graphical): The distance between any vertices of a polygon outline should not be less

than the minimum visual separability distance
3. Separability (graphical): The distance between two objects should not be less than the minimum visual

separability distance
4. Separation (topological): Avoid separation of objects when deleting parts of it
5. Islands (topological): Objects which can be identified as islands may be deleted or enlarged but should not

be amalgamated with other objects of the same category to avoid changes of topology
6. Self-intersection (topological): Avoid introduction of self-intersection of object outlines
7. Amalgamation (structural): Disjoint objects of the same category may be amalgamated if they are close

enough and the area in between is not specifically protected
8. Collapsability (structural): The area of eliminated objects should be distributed among the neighboring

objects such that no holes are created
9. Shape/Angularity (structural): Respect the global shape and angularity of objects

                                                  
1

We define constraints for individual objects or polygons although at least two objects are always affected by any
geometric transformation because we work with (plane filling) polygon mosaics.
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Constraints Related to Categories
10. Size ratio (structural): Respect the size ratio for each category relative to the total area
11. Shape/Angularity (structural): Respect typical shapes and angularity of objects of each category
12. Size distribution (structural): Respect the given size distribution of objects for each category
13. Alignment/Pattern (Gestalt): Preserve typical alignments and patterns of objects of a category

Constraints Related to Partitions or Groups of Objects
14. Neighborhood relations (topological): Preserve given neighborhood relations
15. Spatial context (structural): Avoid introduction of illogical neighborhood relations (e.g., house in a lake)
16. Aggregability (structural): Allow aggregation of categories if required and suitable super-categories exist
17. Auxiliary data (structural): Observe constraints imposed by auxiliary data (e.g., roads, rivers, point

features)
18. Alignment/Pattern (Gestalt): Preserve typical alignments and patterns of objects within the map or within a

group of objects
19. Visual balance (Gestalt): Avoid gross changes in shape and distribution of objects, unless required by

extreme scale change
20. Equal treatment (Gestalt): Ensure equal treatment within a partition of the map and avoid highly unequal

treatment across all partitions.

2.2 Measures

Key Aspects of Measures
Among the important key aspects of measures are: They

• are defined as procedures for computing measurements (numerical values) or binary values in the case of
topological or semantic tests.

• can represent semantic information or domain knowledge in an appropriate format, for instance, as text
strings, as tables or as flags in the database.

• allow assessing the need for and the success of generalization operations.
• are used to make strategic and tactical decisions in the generalization process.
• can be simple (e.g. area calculation) or complex (e.g. require computation of auxiliary data structures such as

triangulations).
• can be absolute (intrinsic) or relative (extrinsic) depending on whether one or more states of the object in

the database needs to be evaluated for a correct interpretation of a situation (e.g. before and after
transformation).

Requirements for Measures
A useful measure should satisfy the following criteria: Ideally, it should

• describe the intended property as precise as possible and should not be influenced by other effects
(orthogonality),

• be insensitive to outliers (robustness),
• be invariant to geometric transformations (geometric invariance),
• produce different results for different configurations of characteristics and similar results for similar

configurations (differentiation),
• be easy to calculate (ease of calculation),
• be easy to use with only a limited number of parameters (ease of use), and
• be easy to interpret (ease of interpretation). Ideally for a certain value (a measurement) only one possible

configuration of the measured property should exist.

Classification of Measures
Measures can be classified according to the main characteristic they represent. The classification scheme below
is influenced to a large degree by the corresponding constraints for categorical data. However, some measures
may express more than one property, for example, the area of an object in combination with its perimeter con-
tains also information about the object’s shape. For practical reasons we distinguish the following classes of
measures:

• Size measures
• Distance and proximity measures
• Shape measures
• Topology measures
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• Density and distribution measures
• Pattern and alignment measures
• Semantic measures and information

3. Conceptual Considerations for the Computation of Measures

3.1 Measures – Potential and Limitations

A well-designed set of measures is a key element in every generalization system. It allows developing an appro-
priate generalization strategy and, since measures can be computed faster and more easily than geometric trans-
formations in most cases, can therefore help reducing the number of time consuming feedback loops and the
extensive usage of backtracking mechanisms. By providing measures at all spatial levels from local to global (or
micro to macro), we provide the means to resolve local conflicts introduced by scale reduction while simultane-
ously controlling the impact of the transformation on the involved neighborhood and the whole dataset. This
approach may lead to the selection of different generalization operators or algorithms for conflicts of the same
type, for instance, some objects violating the minimum size constraint might be enlarged while others are
deleted. Generally speaking, the role of measures is not only to identify conflicts but also to provide clues on
what options (operators) exist for their resolution and what transformation operations (algorithms) should be
applied. Using measures to their full potential therefore means that we try to find cartographically acceptable
solutions to every problem within our reach.

If we compare how a cartographer perceives the structure of a dataset he/she wants to generalize and to what
degree we can represent this complex (and partly subjective) spatial reasoning process with measures, we cannot
expect to be able to fully reproduce it. For practical reasons it is virtually impossible to provide measures for
every theoretically possible situation. It can be expected that problems due to insufficient measures increase
when the target scale decreases because difficult to formally recognize higher order structural elements become
more and more important as does the artistic component of map generalization. A second reason that prevents us
from describing every facet of a dataset formally is the variation of the different types of categorical data as well
as the data acquisition methods that were used which of course also have an influence on the significance and
reliability of measures in a generalization process. A third limiting factor is the comprehensive view of a carto-
grapher on the data as well as on their spatial and thematic context. We can only partially replace this informal
knowledge with auxiliary data such as digital terrain models, road networks and point data or with information
acquired through expert interviews.

3.2 What Should be Measured and When?

For a comprehensive set of measures for the generalization of categorical data we think of a system consisting of
mandatory and optional measures. The major part consists of mandatory measures which can be used for all
types of categorical data. The area of a polygon or the average size of the polygons of a category for example
are measures where we can assume that they are needed regardless of the type of categorical data we want to
generalize. Optional measures are only computed for specific types of categorical data. Such measures relate to
higher order spatial structures, such as patterns and alignments and to semantic information for specific data
types. The reason why we propose such a strategy has several reasons. Firstly, the identification of patterns or
alignments is very complex from the computational and the algorithmic perspective. Secondly, we can think of
many types of categorical data where the spatial variables of a polygon (e.g. area and shape) and its category are
completely independent from the one of its second or third order neighbors. Treating such polygons as a group
of objects in the generalization process would then be just wrong and could also have a negative influence not
only on the generalization operations which are applied to the concerned partition but also on the quality of the
resulting map. The concept how we plan to implement mechanisms which allow avoiding the computation of
inappropriate or misleading measures will be presented in chapter 5.
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4. Measures for the Generalization of Categorical Data

4.1 Size Measures

Size measures are very important in our measures toolbox because they are useful for all types of categorical
data. We use them both as “standalone” indicators and as components complex measures. They are used on all
spatial levels from micro (e.g. the area of a polygon) to the macro levels where we compute statistical indicators
or plot histograms for entire categories or for partitions. Since some size measures such as area of a polygon are
computed automatically in most GI Systems, no specific methods need to be implemented for them. Resolving
size related conflicts are among the major tasks in categorical map generalization. We will provide measures for
conflicts identification as well as the means that allow selecting appropriate operators and generalization algo-
rithms. For most measures we compute absolute and relative versions. While absolute measures are used to
identify local conflicts and their severity, we need relative measures for comparing polygons and categories as
well as for assessing global properties of a dataset. The generalization operators most often associated with area
measures are reclassify, delete and enlarge.

Measures:

Number of polygons

n Ni, ni is the number of polygons of category i. N is the total
number of polygons in the dataset.

Although the number of polygons of a category or the entire dataset is not size measures, we define them at this
point because these numbers are components of many measures we define later in this section.

Area

amin amin is the user specified minimum area of a polygon at target
scale.

amin can either be defined for the whole dataset or separately for each category. It is the minimum area at which
the category of an object, represented by a color fill, can be clearly identified. When amin (and other minimum
dimensions as well) is defined we have to take into account that the outlines of each polygon are represented by
a thin black line. Besides target scale, the size of amin is also influenced by various other map controls, for
instance, screen resulution.

aij
aij is the area of polygon j of category i.

A ai ij
j

n

=
=

∑
1

Ai is the total area of all polygons of category i.

A A is the total area of the dataset.

Area is one of the most important measures in categorical map generalization. At the micro level (individual
polygon) we can identify conflicts once we have defined a minimum area amin. At the meso and macro levels, the
area measures defined here will mostly be used as components for the computation of the measures we introduce
below.

Relative area

ra
a

Aij
ij

i

= ⋅100
raij is the percentage of the area of polygon j of category i of
the total area of category i.

RA
A

Ai
i= ⋅100

RAi is the percentag of the area of category i of the total map
area.

Relative area is an important measure because it allows us assessing the importance of an individual object in its
context. Together with other indicators we can establish formal guidelines which operator to use for its generali-
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zation (e.g. delete or enlarge). As always, this process can then be modified by integrating semantic information.
At the macro level, comparing the RAi values of categories can be used for strategic decisions. We can, for
example, define a dominating category with a very high RAi value and only few but large objects as background
and generalize it by generalizing the polygons of the other categories (Peter 1997). The RAi value is therefore
also a density measure which will be discussed later in this section. If we discover an extremely unequal distri-
bution of the RAi values we should consider a reclassification of the data into fewer categories before we start
applying geometric transformations.

Number of polygons below minimum area per category

nb a ai ij; min< nbi is the number of polygons of category i with an area
below the defined minimum area amin.

Relative number of polygons below minimum area per category

rnb
nb

ni
i

i

= ⋅100
rnbi is the percentage of the number of polygons of category
i below the minimum area amin compared to the total number
of polygons of category i.

Total area of polygons below minimum area per category

AB a a ai ij ij
j

= <∑ ; min
ABi is the area of the polygons of category i with an area
below the defined minimum area amin.

Relative area of polygons below minimum area per category

RAB
AB

Ai
i

i

= ⋅100
RABi is the percentage of the area of category i which lies in
polygons with an area below the defined minimum area amin

compared to the total area of category i.

This group of measures is very important to decide which operator (e.g. delete or enlarge) to use for the reso-
lution of area conflicts. Since the goal of cartographic generalization is to retain the balance of the areas of the
individual categories in the target dataset, we have to assess how many polygons of each category are affected
by minimum size conflicts and what total area they represent. Using appropriate criteria (see below), we can
apply the operators mentioned above and limit the shift in area distribution between categories. We would, for
example, rather enlarge polygons of a category that occurs entirely in small objects than delete them to prevent
this category from disappearing in the generalized dataset. If the above indicators show low values for several
categories, reclassification of the data should be considered. Both absolute and relative measures for number of
polygons and area are required to assess a situation reliably.

Difference to minimum area

ad a aij ij= − min
adij is the difference between the area of a polygon j of
category i and the defined minimum area amin.

If adij is positive, the polygon area is above the minimum area and the situation for that object is not identified as
a conflict. If adij is negative we have identified a violation of the minimum size constraint. The amount of adij is
a measure for the severity of the conflict. The strategy for conflict resolution of polygons of that category could
then be to enlarge the objects with an area only slightly below the minimum area or within a certain bandwidth
respectively and to delete the other ones (figure 1). Although such a procedure does not respect the spatial
distribution of the polygons to be enlarged or deleted, we can assume that it will produce acceptable results in
most situations. This procedure can always be modified by integrating semantic information or by defining rules
(e.g. do not delete island polygons). The definition of the lower limit of the bandwidth can either be made
automatically (e.g. 75% of the polygons or of the category area should be represented in the target map) or be
based on user input. Histogram plots of the polygon area distribution per category, as shown in figure 1, can be
of good use since they allow flexible and more intuitive parameter settings.
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Mean polygon area

ma
A

ni
i

i

=
mai is the mean polygon area of category i.

MA
A

N
=

MA is the mean polygon area of the entire dataset.

Polygon area coefficient of variation

acv

a
A

n

n

mai

ij
i

ij

n

i

i
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acvi is the variation in % in polygon area of polygons of
category i relative to the mean polygon area of category i.

ACV

a
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MA
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m

=
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⋅

==

∑∑
11

2

100

ACV is the variation in % in polygon area relative to the
mean polygon area.

The main application scope of statistical measures like the two mentioned above is the evaluation of generaliza-
tion results. In a good solution, these indicators would only change within a certain bandwidth both within and
between categories. Many statistical indicators assume a normal distribution of the population (polygons). Since
this will most likely not be the case for polygons of the various types of categorical data, such measures should
only be used with care. The polygon area coefficient of variation (FRAGSTATS 1994) partially resolves these
problems but should still only be used together with other indicators to avoid misinterpretation of the structure of
the categories or the datasets.

Perimeter

pij
pij is the perimeter of polygon j of category i.

Length of common boundary with neighbor polygons

cb i k j lij kl, ; ,≠ ≠ cbij,lk is the length of the common boundary of polygon j of
category i and its neighbor polygon l of category k.

(Weighted) relative length of common boundary with neighbor polygons

rcb
cb w

p
i k j lij kl

ij kl ik

ij
,

, ; ,=
⋅

⋅ ≠ ≠100
rcbij,kl is the percentage of the length of the common bounda
ry of polygon j of category i and its neighbor polygon l of
category k, multiplied by a factor wik, representing the
neighborhood relations between categories i and k, com-
pared to the total perimeter pij of polygon j of category i.

Two of the three measures above deal with the context of a polygon. Perimeter itself can be interpreted as a
simple shape measure together with polygon area; a long perimeter in connection with a small area indicates a
complex or elongated, non-circular shape. Better shape measures will be discussed latter in this section. Besides
providing information about the neighborhood and the length of the shared segments with other polygons for
every object, the later two measures are of central importance when the area of a (small) polygon needs to be
split among its neighbors. The rp measure indicates the relative length of the common boundary. The weight
factor wij allows respecting semantic knowledge about the involved category pair if desired. This measure is de-
rived from FRAGSTATS’ Edge Contrast Index (FRAGSTATS 1994). All perimeter and common boundary
measures can also be calculated on a per category basis or for an entire dataset (FRAGSTATS 1994). While
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these indicators may be useful in landscape fragmentation analysis (the original application domain of the
FRAGSTATS package), we cannot think of how to usefully interpret them (or the changes respectively) in the
context of cartographic generalization. Figure 2 shows the cb measure in a complex situation.

polygons of category i

po
ly

go
n 

ar
ea

 [m
m

2 ]

delete

enlarge

a
ij
>a

min

a
min

a
min

-x

a
ij
≥a

min
-x

1

2

3

4

5

cb1,2

cb1,3

cb1,4

cb1,5

cb2,5

cb2,3

cb3,4

cb4,5

Figure 1: Histogram plot of polygon area distri-
bution. Polygons with an area within a
bandwidth x from the minimum area amin

are enlarged while the others are deleted.

Figure 2: Length of common boundary in a situa-
tion with 5 polygons.

4.2 Distance and Proximity Measures

Distance and proximity measures are very important for the generalization of all types of categorical data. Their
spatial application scope reaches from micro to meso and we use them to identify and resolve conflicts within
and between polygons. Distance and proximity are closely related terms. Every distance related conflict is also a
violation of the proximity constraints but not vice versa. While a distance conflict requires being resolved (e.g.
because two vertices of a polygon are too close to each other), proximity expresses rather an option; we can for
instance aggregate two objects of the same category because they lie within a specified distance of each other.
The operators associated with distance and proximity measures are simplification, exaggeration and enlargement
for conflicts within a polygon. The options when two polygons are involved are aggregation, displacement, ex-
aggeration and typification. Which operator to choose and which generalization algorithm, (e.g. uniform or non-
uniform displacement), depends on the semantic context of the situation and on the available space in the neigh-
borhood of a conflict. We will provide measures which allow identifying conflicts reliably and resolving them in
a cartographically appropriate way.

Measures

Minimum distance

dmin dmin is the minimal visual separability distance.

dmin is normally identical for all categories of a dataset and depends both on target scale and on the various map
controls such as the intended map purpose and output media. It is the shortest distance at which we still can
clearly visually separate two polygons or identify all parts of one polygon respectively.

Consecutive vertex distance

cvd daj a j= +,( )1
cvd is the distance between two consecutive vertices of a
polygon j.

If cvd is smaller than dmin,, we have identified a conflict. The two conflicting vertices can either be replaced by a
new vertex at the position of the arithmetic mean of the coordinates of the conflicting vertices or the two vertices
are displaced in such a way that no new conflicts are created. The latter option prevents the introduction of un-
natural object shapes.
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Vertex distance

vd daj bj= ,
vd is the distance between two non-consecutive vertices of a
polygon j.

If vd is smaller than dmin,, we have identified a part of an object that is too narrow. Because of the duality of
problems in categorical map generalization of polygon mosaics, we have, in many cases, also identified a dis-
tance conflict between two polygons. The identification of problematic polygons is relatively straightforward.
Using inside buffers of size half the minimum distance, we compute the so-called core areas of an object
(FRAGSTATS 1994). A polygon with none or more than one core after buffer application (buffer size 1/2*dmin)
has at least one part which is too narrow. Bader (1997) has implemented methods which allow both identifica-
tion of the conflicting vertices and resolving the conflict by displacing them from each other. Depending on the
situation, displacement of vertices and widening gaps is in general the appropriate operator for the resolution of
distance related problems within a polygon but simplification by removing bends in the objects’ outline is also
an option. Removing a narrow part by using an aggregation operator from the viewpoint of the neighboring
polygons would mean to split one polygon into two separate objects and therefore to introduce topological error.
Figure 3 shows the concept of both the cvd and the vd measures.

cvd < dmin

cvd < dmin

cvd < dmin

consecutive
vertex distance

vertex distance

vd < dmin

vd < dmin

Figure 3: Distance conflicts between consecutive ver-
tices and between non-consecutive vertices
of a polygon and possible solutions
(dashed line).

2nd order distance (distance between non-neighboring polygons)

sds dia ib= ,
sds is the shortest distance between two polygons of
category i.

sdd dia jb= ,
sdd is the shortest distance between two polygons of
different categories.

sds and sdd relate to proximity problems between separate polygons (figure 4). We distinguish two cases:
proximity between two objects of the same category and between polygons of different categories. For the first
case, we have (besides the possibility to delete one polygon) two alternatives. We can either displace one or both
objects or we can employ the aggregation operator. Aggregation is in general used if both candidate objects are
quasi island polygons and lie inside a big object of a dominating category. This is also the situation where we
can use the aggregation operator to resolve the distance conflicts mentioned in the last section without intro-
ducing severe topological error. Aggregation of polygons can of course also be employed for cartographic
reasons beyond pure conflict resolution to improve the quality of a map for a specific purpose. In the second
case, if we have to deal with proximity problems between polygons of different categories, we have only the
displacement operator available for generalization. Because we compute 2nd order distances for all polygons up
to a reasonable maximum search distance ds, we have also enough information available to estimate if dis-
placement is at all possible and how far we can move one or both of the conflicting polygons (or parts of them)
without creating new proximity conflicts (see figure 4). The quality of the results of both operators depends on
how the generalization methods work. Aggregation of polygons should be executed in such a way that the part
bridging the gap is integrated in the overall shape of the resulting object in a harmonic way and the relative
distance of polygons should be maintained as much as possible when they are displaced. Algorithms respecting
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these issues have been implemented by Bader (1997, 2001) and will be adopted for polygonal data by Galanda
(2001).

Weighted 2nd order distance (cost distance)

wsds d wia ib j= ⋅,
sds is the shortest distance between two polygons of cate-
gory i, adjusted by a weighting factor representing the cost
to cross the area of category j.

wsds is a modification of the measure introduced in the last section. By using weighting factors, we can integrate
domain knowledge and semantic information in the generalization process and compute so-called cost distances.
These can rather be seen as a complementary measure to the simple Euclidean distances we compute above
because we neither want to use them for conflict identification nor to estimate how much space he have available
for the displacement of polygons. The main application scope of cost distance measures is the theme driven
aggregation of polygons beyond minimum distance conflicts. Therefore, it is only usefully computed between
objects of the same category. By assigning to a category a low weighting factor we can facilitate aggregation of
other polygons across its territory while a high weighting factor acts like a barrier. In landuse maps, for example,
we would normally prevent aggregation of polygons across lakes by assigning them a high weight factor while
aggregation across grassland belonging to the dominating categories would be promoted by assigning this cate-
gory a very low weighting factor.
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6
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d2
d4

ds
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N
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N

N

N

>ds

d4

>ds

>ds

>ds

>ds

>ds

N = Neighbor

Id

max. search distance:

Figure 4: 2nd order distances for a situation of 6 polygons. Distances are only computed up
to the maximum search distance ds.

Difference to minimum distance

dd d d= − min dd is the difference between a computed distance d and the
defined minimum distance dmin

If dd is negative, we have identified a conflict related to distance. Similar to adij for area measures, the amount of
dd expresses the severity of a conflict and can therefore be used to guide the operator selection process.

4.3 Shape Measures

Shape measures can be computed for entities at various spatial levels. At the micro level we mainly want to
identify characteristic shapes of individual objects, while at the macro level, we compute shape indicators for
entire categories to compare the values before and after generalization. Except for one special case that we will
discuss below shape measures are not directly used for conflict identification. One of their main application
scopes is the evaluation of generalization solutions. Therefore we will compute indicators which allow assessing
the changes in shape that have taken place during the transformation process both at the micro and the macro
level. The second and more important application scope of shape measures is shape recognition and the identifi-
cation of characteristic shapes of specific types of categorical data at the micro level to guide the operator selec-
tion process. If we are able to reliably identify complex structures and preserve their overall characteristics
during data generalization, it can be expected that the visual appearance of our results will be of good quality.
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Measures

Zero core area

zca j
zcaj identifies a polygon j which disappears from the dataset
after the application of an inside buffer of size 1/2*dmin

(Boolean value).

zcaj can be interpreted as a special case of a minimum area conflict. With this measure we can identify long and
thin objects. Since their area is above the defined minimum amin we would normally enlarge them or select other
appropriate alternatives to preserve them for the target dataset. Figure 5a illustrates the idea of this measure.

Shape index

si
p

a
ij

ij

ij

=
⋅2 π

siij describes the shape of polygon j of category i compared
to a standard circular object of the same area.

Category shape index

csi
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csii describes the shape of all polygons of category i
compared to a standard circular object of the total category
area.

It is obvious that the interpretation of the above shape indicators is difficult, especially if calculated for an entire
category. As it is illustrated in figure 6, the shape index si value of a circle is 1 which is the minimum. The
higher the values are, the more complex and irregular (non-circular) is the shape of an object. Like other
measures, such as fractal dimension, the above indicators are often used for the analysis of landscape fragmenta-
tion (FRAGSTATS 1994). One of the basic properties of the majority of shape measures is that they are not
unambiguous; different configurations can produce identical values. In the context of cartographic
generalization, the individual values have no specific meaning since it is neither useful to compare the shape of
polygons to circles nor is it our wish to generate circular objects through generalization transformations. The
shape index measures are possibly useful to compare objects and to evaluate their changes after transformations
have been applied. To assess the relative changes between categories can be interesting as well. However, since
we work with polygon mosaics, where changing the shape of one particular object inevitably means that the
shape of its neighbors are modified as well, we doubt that important insight can be acquired from such measures
or their changes, respectively. One of the main goals of cartographic generalization is to change the shape of the
objects in a map in an appropriate and controlled way suitable for a specific target scale and observing the
various map controls. Therefore we believe that it will not be easily possible to establish a connection between
changes of shape indicator values and the application of unsuitable generalization methods. We will nevertheless
perform empirical tests to prove this hypothesis in the course of our future work.

Number of distance conflicts per arc

ndc jl
ndcjl designates the number of distance conflicts of the
common arc (segment) of polygon j and polygon l.

Knowledge about the number of distance related conflicts, especially those between non-consecutive vertices
within an arc of a polygon can be very important. A high value of ndcj characterizes a complex shape such as a
wiggly structure. While resolving every conflict individually could result in the selection of a simplification
operator in every case due to lack of space, treating the conflicts as a group allows better preservation of the
objects’ overall shape. We could then alternate between simplification, exaggeration or typification methods,
preserve every second bend and thus the overall shape of the object for the target dataset. Figure 5b shows such a
situation as well as a possible solution. Methods for the formal description of such situations, as well as gener-
alization algorithms for this procedure are well developed because it is a frequent problem for roads in topo-
graphic map generalization (e.g. Mustière and Duchêne 2001).
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Characteristic shape

cs j
csj designates a polygon j with a characteristic shape as per
definition.

One of the main aims of cartographic generalization is to preserve characteristic shapes in the target map. csj is
not a measure like others because it has neither a unit, nor does it express a percentage nor is it an absolute
number. Its main goal is to flag certain objects as characteristic for a specific type of categorical data and limit
the kind of generalization operators that can be applied on them. By defining this measure, we want to integrate
semantic information and domain knowledge about shape in the generalization process. Characteristic shapes are
for example rectangles representing agricultural fields in a landuse map or ring structures in geological maps.
These two structures can be identified easily with automatic methods. A polygon flagged as characteristic may
not be aggregated with polygons nor is it allowed performing any other (non uniform) operations on it that
dramatically change its overall appearance. It may, for instance, only be displaced or scaled as an entity and
distance conflicts may only be resolved through exaggeration. We will develop a list of characteristic object
shapes for different types of categorical data and implement methods for their reliable identification. Methods
for this purpose can be found in a variety of disciplines, such as in computer vision.

distance conflicts
vd < dmin, ndc = 3

b)

a) zero core area
zca = true

no. of core
areas: 2

!

buffer
distance
0.5*dmin

si1 ≈ high si2 ≈ low

==> si1 >> si2 > si3= 1

si3 = 1

Figure 5a: Example for a polygon with zero core
area = true, identifying an object with a
long and thin shape.

Figure 5b: Example for the ndc measure. Three dis-
tance conflicts on the same are identified
and resolved with respect to each other
(dashed line).

Figure 6: Shape index (si) for three objects. The
minimum value of si is 1 for a circular
shape. More complex shapes have
higher values. Shape index is used for
comparing the shapes of polygons, the
value itself cannot be usefully inter-
preted in cartography.

4.4 Topology Measures

Topology measures have a regional (meso scale) spatial application scope because they deal with relationships
between neighboring polygons. Changes in topology are a logical consequence of generalization transforma-
tions: whenever objects are aggregated or removed from the dataset, topology changes. The smaller the target
scale, the more changes will occur. By defining topology measures, we do not want to prevent such modifica-
tions from taking place but rather establish guidelines to define which cases are acceptable and which ones are
regarded as topological error. To do this, we have to consider geometric as well as semantic properties of the
data. Our goal is to influence the operator selection process before the transformations starts by limiting the
choice for the generalization of specific situations. Topology measures are non-metric, have no unit nor do they
represent a percentage. Like characteristic shape defined in the last section they are implemented as flags or
tables in the database.
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Measures

Neighborhood

nh j
nhj contains a list with the category numbers of all neighbor
polygons of a polygon j.

nhj is rather a source of information than a measure. Besides using it as component for other measures such as
the length measures defined in section 4.1, we can compute any kind of statistical analysis of the neighborhood
relationships in a dataset to assess its structure at the meso or macro level.

Island polygon

i j
ij defines a polygon j as an island.

The two measures above are mentioned for completeness only since the data model of most modern GIS soft-
ware packages provides topological information by default. As the name suggests, island polygons have only
one neighbor and are therefore easy to identify. Since such objects should be preserved as islands in the target
map for cartographic reasons in most cases, they are flagged accordingly. While their shape can be generalized
in an appropriate way (e.g. through simplification), we limit the application of other potential operators; aggre-
gation and deletion are not allowed, only displacement and/or exaggeration. Such methods could eventually also
be implemented for other polygons that are not necessarily islands in order to meet specific semantic require-
ments.

Unwanted neighborhood

unh unh contains a prioritized list of neighborhoods which are
not allowed or should be avoided for each category.

This measure can be implemented as a list or look-up table containing neighborhoods to be avoided for each
category. This table can be consulted for instance when the area of a polygon to be removed has to be distributed
among its neighboring objects. Deletion is the operator most changing the topological relationships in a map
especially in complex cases where several categories are involved. Although we have introduced measures
which allow controlling unequal splitting of objects under size measures (e.g. the relative length of common
boundary), we do not explicitly exclude categories from becoming neighbors. Using a structured and prioritized
list will provide the means to avoid unwanted or unnatural neighborhoods as far as possible by integrating
semantic information about the type of categorical data to be generalized. Of course, this list computed for unh
should be in accordance with the one for nhi at the object level. From an opposite point of view, the last items in
the list for each category can be regarded as the preferred neighbors if it turns out to be impossible to avoid a
topological conflict completely. If a category is not mentioned in the table at all, it is a preferred neighbor from a
positive point of view.

Separation of polygons

sep j
sepj designates a polygon j which has been separated into
two or more polygons during generalization transformations.

The value of sepj (true or false) can only be computed after completing the transformations for the respective
map area. sepj indicates a topological error introduced by the aggregation operator which has been applied to
two of object j’s neighbors. If such a case is discovered, the aggregation operation has to be revoked and an
appropriate alternative method has to be selected to resolve the conflict, such as exaggeration of polygon j and
displacement of its neighbors (see figure 7). Of course, it would be much more efficient to identify potential
candidate situations for this kind of problem before transformations take place. However, since it is very costly
from the algorithmic point of view to comprehensively describe them and because they are not frequent in most
types of categorical data, we refrain from implementing them at the moment.
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Self-intersection

sis j
sisj designates a polygon j where self-intersection of its
outlines has been introduced during generalization
transformations.

Some generalization algorithms produce self-intersections of a polygon outline (e.g. Douglas-Peucker) or
between polygons and can therefore introduce topological error to a generalized dataset. Because procedures to
test for self-intersections will be implemented at the algorithm level at run time or at least before the generaliza-
tion operation has terminated, we do not have to take care of this problem by providing a dedicated measure.

!

�

a1

a2

b1

b2

b1

b1

a1

a1

a2

Figure 7: If sepj is true, a polygon has been wrong-
fully separated by generalization trans-
formations. The operation is revoked and
a different operator respecting topology
is applied.

Auxiliary Data and Topology

Besides providing valuable semantic information the integration of auxiliary data such as point information in
the generalization of categorical data imposes strong topological constraints and therefore drastically limits the
options we have available for the operator selection to execute generalization transformations. A fundamental
requirement for all such generalization solutions is that the containment of points in polygons may not be altered
during generalization (de Berg et al. 1995). This creates severe problems for such operators like simplification
and displacement. The deletion of objects is no longer an option. The concept of defining characteristic shapes
would have to be extended to include also segments of objects which could then only be transformed with
respect to the point data, for instance a particular bend may be exaggerated but not simplified. On the other hand,
integrating auxiliary data in the generalization of categorical data will also lead to more correct results if com-
pared with the real world. If time allows and provided we have appropriate data available, we will perform tests
and evaluate the differences between generalization solutions with and without the integration of auxiliary data
and their topologic potential for different target scales.

4.5 Density and Distribution Measures

Density and distribution measures relate to higher order spatial structures and describe properties of the data at
the macro level. By implementing them, we try to simulate the ability of human beings to understand the struc-
ture of a dataset holistically. According to our definition, the two terms are not complementary and describe
different aspects of a dataset. While density focuses rather on specific objects, for example all polygons of a
category, a measure for distribution deals with the space between them. Therefore, the values produced for den-
sity range from low to high, whereas those for distribution are interpreted on a scale from uniform to random or
clustered. In this section we define a measure that allows identifying regions with a high density of objects of a
category (cluster) and two measures which allow assessing the quality of generalization solutions by comparing
relative indicators for categories before and after geometric transformations.
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Measures

Relative area

RA
A

Ai
i= ⋅100

RAi is the share in % of the area of category i of the total
map area.

Relative area of a category compared to total map area has already been defined in section 4.1 under area meas-
ures. Its other main application is to estimate the density of a category in a dataset. Comparing changes of the
values before and after generalization and changes in the relation of values between categories can provide
important information. A drastic change of RAi for a certain category indicates that the deletion operator has
been applied with inappropriate parameters.

Relative area of the category convex hull

chci chci represents the area of the convex hull of all polygons of
category i in % of the total map area.

chci is an indicator for the distribution of the polygons of a category in a dataset. As such, it considers only the
extreme objects of each category with respect to their coordinates and does not provide any information about
the density relationships inside the convex hull. Therefore, chci has always to be used together with other meas-
ures, especially relative area and absolute number of polygons. The main application of chci is the identification
of cases of inappropriate parameter selection for the resolution of minimum area conflicts (deletion operator).
Drastic changes of chci, together with a considerable reduction of the number of polygons indicates that a cate-
gory is no longer adequately represent in a partition of a map (see figure 8 left). Accordingly, drastic reduction
of the absolute number of polygons and stable chci value indicates a similar problem somewhere on the inside of
the convex hull which requires our attention. We could probably define measures that describe the distribution of
objects more precisely and reliably but these would require extensive computation (and frequent recomputation)
of distances between objects. For the intended purpose we believe that such procedures are too time consuming
and computationally too expensive. Empirical testing will show if our convex hull approach is sufficiently reli-
able with real data. A second relatively simple and easy to implement method to roughly assess the distribution
of the objects of a category would be to partition the map with a regular grid and to compare the number of
polygons in each cell before and after generalization. As it is illustrated in figure 8 on the right, a combination of
convex hull and regular grid could resolve some of the problem of the chci measure and would still be easy to
compute. We will experiment with this method as well.

nb=11,na=3 nb=11,na=5 nb=8,na=4

nb=10,na=6nb=17,na=7nb=10,na=5

nb=64,na=27

Figure 8: (left) Changes in convex hull area for the polygons of a category after generalization. Too many ob-
jects have been deleted (red/dark). (right) Applying the convex hull method in the cells of a regular
grid allows localizing low-density problems more precisely.
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High-density region (cluster)

hdi hdi is the convex hull of polygons of category i, each of
which is lying within a distance ds to its nearest neighbor.

hdi defines the outlines of a cluster of polygons of the same category. This measure is most usefully computed
for binary maps or for datasets with dominating categories which can be treated as background. All objects of a
cluster should be contained in the same (background) polygon and the presence of objects of other categories is
not allowed to prevent interference during the generalization. The identification of clusters is relatively straight-
forward using a buffer of an appropriate size in combination with the measures for neighborhood proposed in the
previous section, as it is illustrated in figure 9. The possibility to treat objects as an entity offers several
advantages. We can, for example, compute a variety of the defined measures specifically for the cluster area and
the polygons in it and therefore better control both the operator selection process and the generalization
transformations for that area. Working with high-density regions also allows the implementation of typification
methods. Using the outlines of the convex hull as a guideline, we can reduce the number of objects while
preserving the represented area and the group’s overall shape.

Figure 9: Clusters of polygons of the same category
are identified on a homogenous back-
ground category using buffers and convex
hull operations.

4.6 Pattern and Alignment Measures

The purpose of the measures we have defined so far is to formally describe the given entities and their structure
as comprehensively as possible. The idea behind patterns and alignments, however, is different: we have prede-
fined structural concepts (prototypes) in mind and try to find representatives of them in a dataset. Our definition
of the term pattern designates characteristic arrangements and/or sequences of polygons in a map. The variables
are category, area, shape, distance and semantic/logical relationship. Thus, an alignment can be defined as a one-
dimensional pattern: the objects are arranged more or less on a virtual polyline. Pattern and alignment recogni-
tion in the context of digital cartography is a complex task. In this section we will present a pragmatic method
which allows to reliably identify such structures in specific types of maps with categorical data.

Measures

Pattern

patternm patternm designates a user defined group of polygons which
form a pattern according to geometric, semantic and logical
considerations.

Recognizing global patterns in polygon mosaics, especially in those with many categories and high spatial vari-
ability is almost impossible, even for the human eye. Although we might be able to discover certain regularities
in a map relating to category sequence, shape or area, we fail to explain their existence in reality in most cases
with sufficient reliability. In the majority of datasets with categorical data, the spatial variables of a polygon are
independent from those of other objects at some distance of it and are determined by facts we do not know (e.g.
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ownership relations or soil quality). Therefore, the attempt to develop fully automated pattern recognition
methods for polygon mosaics is perhaps an over-ambitious idea. We are aware that many algorithms for sub-
problems of our problem exist in a variety of scientific disciplines which could eventually be adopted (many
work with raster data, though). Depending on the prevailing conditions and the parameter settings, most of these
methods would identify some sort of pattern but possibly only pseudo patterns, not existing in (cartographic)
reality. Respecting non-existing patterns in generalization transformations could lead to inferior results because
the number of options for the operator selection would be drastically and unnecessarily reduced in many cases.
We believe that in general good and plausible generalization results can be achieved with the measures we have
introduced in the preceding sections and by careful selection of the transformation algorithms with appropriate
parameters.

We can, however, think of situations where patterns exist in a dataset and where treating them as such could be
advantageous with respect to the final result. One example is an area with rectangular agricultural fields of dif-
ferent categories. While the sequence of categories might be random, shape and area are not. Defining a pattern
in such a case is an extension of the cluster concept combined with the typical shape measure we have intro-
duced in this chapter. A second and more complex potential application is the characteristic sequence of
landuse/landcover categories with change of altitude. Whether a pattern can be identified in this case depends on
the scale of the source map, on the defined categories as well as on many other variables. We assume that an
expert could identify macro scale patterns we cannot treat with the topological and other measures we have in-
troduced also in geological maps. Because of the fact that existing automatic pattern recognition methods are too
unreliable for our purposes, we recommend that the user defines the objects forming a pattern interactively when
he/she thinks that it exists and that preserving it in the target map would be useful. The concerned objects can
then be transformed with respect to each other.

Alignment of polygons

alignmm alignmm designates a user defined group of aligned polygons
based on geometric, semantic and logical considerations.

We can think of a number of situations in various types of categorical data where alignments occur. Lakes, for
example, often form alignments in rather broad valleys. These structures satisfy several of the variables defined
in the introduction since comprehensible logical connections exist between the individual polygons of an
alignment and the objects’ shapes are at least similar. A second example, relating to geology, is the erosion of
ridges which can partly uncover the underlying stratum, resulting in a series of aligned polygons in a geological
map. As for patterns, the correct identification of an alignment and its member objects depends to a large degree
on semantic information and expert knowledge. This reasoning process can only partly be substituted by
auxiliary data (e.g. DTMs) and rules and thus not be satisfactory automated. We therefore recommend that the
(experienced) user defines the polygons belonging to an alignment. Because alignments normally consist only of
relatively few objects, this task can be executed rather quickly by selecting them interactively with the mouse.
The individual members of the alignment can then be treated as a group.

alignm1,1

alignm1,4

alignm1,3

alignm1,2

alignm2,1

alignm2,2

Figure 10: Alignments of objects are identified inter-
actively by the user/system operator based
on expert knowledge, represented in the
figure by mountain ridges and rivers.
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Displacement would only be possible in the same direction for all objects and by approximately the same
amount. Deletion of particular polygons would only be allowed in exceptional cases while the aggregation of a
member object and a non-member polygon would be completely prohibited. Although we do not formally
require it, an alignment will be formed by objects of the same category in the majority of cases. Figure 10 shows
two alignments of lakes in mountainous area. The additional information like mountain ridges and rivers
represents the geographic knowledge of the user. Detailed auxiliary data and computationally expensive
procedures would be necessary to achieve the same result with automatic methods. If adequate domain
knowledge is not available, we recommend to rather not define alignments and to generalize the objects
individually.

4.7 Semantic Measures and Information

Semantic information in relative and absolute terms has been integrated in many of the measures we have intro-
duced throughout this chapter. We have defined measures like characteristic shape and island polygon which
designate important objects according to their shape and their position relative to other objects. Therefore, all
that is left to do in this section is to introduce a measure which designates an important polygon based on
semantic information. Such objects can then be treated in an appropriate way, for instance, only exaggeration
and displacement operators are allowed but not deletion.

Measures

s j
sj designates an important polygon j based on semantic
information.

5. Measures in the Generalization Workflow

A generalization workflow with emphasis on measures is illustrated in figure 11. The first set of measures is
computed as part of the initial analysis of the dataset to be generalized. At this point, we want to gain structural
insight about the objects and categories in the dataset as well as the relations between them both in absolute and
relative terms. Conflict identification is not yet an issue. The statistical measures we have introduced in chapter
4, visual inspection of the data and any form of expert knowledge or other information we have about the data
type, the geographical location as well as the applicable map controls (e.g. target scale, map purpose and output
media) are integrated to a comprehensive view of the data and a strategy for the generalization task ahead. If
reclassification of the data is required, it should take place at this point, before geometric transformations start. If
we reclassify the dataset, the statistical measures of the initial data analysis have to be recomputed, because they
represent the before state of the data which is needed later to assess and judge changes.

Based on the mathematical description of the data and other formal or informal information we have available,
we are now able to define our strategy (see figure 11 center). We define both the values of the measures for con-
flict detection (graphic parameters), such as minimum area and distance, and those representing semantic
knowledge like the tables with weight factors and neighborhood information. Patterns and alignments are also
defined at this stage, if they occur in the dataset. For such measures like characteristic shape, the system opera-
tor can specify examples interactively on the screen. Automatic procedures will then search the dataset for
objects with similar shapes of the respective categories (e.g. for ring structures of some sediment layer in
geology maps). Important objects based on semantic information as defined in section 4.7 can be flagged
automatically or interactively depending on whether all required information is formally available or not.

A very important issue for the generalization of polygon mosaics is the processing order. We recommend work-
ing on a per category basis. The advantage of this strategy is that we can identify and resolve conflicts (more or
less) independently from each other because objects of the same category have no common boundaries per
definition 2. In addition to that we have defined many measures on the category level and can better evaluate
their changes both formally and visually if we proceed per category. This would not be the case if we chose
processing the data, for instance, from upper left to lower right. The transformations we apply on the objects of
one category have an influence on the polygons of other categories. Selecting an appropriate sequence is there-

                                                  
2

According to our definition, a polygon mosaic consists of a continuous network of objects. The data model uses shared
primitives. No polygon has common boundaries with other polygons of the same category and the objects’ outlines are
graphically represented by a thin black line.
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fore an important strategic decision. In general it is advisable to start with categories consisting mostly of small
polygons and a small relative area and to treat the so-called dominating or background categories later. How-
ever, this depends on the type of categorical data to be generalized and on its specific properties. Although
generalization operators and algorithms are not explicitly part of this work, we recommend an initial cleaning of
the dataset by deleting small objects that cannot be aggregated with other polygons of the same category at a
later stage (noise removal operation)). Depending on the structure of the dataset, we can considerably accelerate
the following frequent recomputation of measures since fewer objects are present. The global structural indica-
tors should not be affected dramatically by this procedure. The sequence of operators in a generalization
workflow is an important strategic issue as well but since decisions are made based on the specific values of the
measures for a given dataset and not on the measures themselves we cannot make further recommendations at
this point.

In contrast to a per category processing order, we could also envision a per operator sequence, in which gener-
alization operators are applied in sequence to all polygons of all categories. In our empirical studies, we will
experiment with different sequencing options to assess the influence of the possible processing order.

Map
Controls

Initial Data Analysis
(Statistical Measures)

Visual Inspection
Expert Knowledge

Data
Reclassification

Transformations
Evaluation

(Formal and Visual)

(Intelligent)
Recomputation

of Measures

Definition of Parameters for the
Generalization Transformations ... 
- Graphic Parameters:
 min. area, min. dist., bandwidths etc.
- Semantic Information:
 weight factors, neighborhood info.,
 alignments, patterns, processing
 order of categories etc.

reject (change methods, param.)

accept (next step)

main
generalization

loop
END

Figure 11: Measures in the generalization workflow.

After every sequence of geometric transformations, all relevant measures have to be recomputed (the after state
of the data). The following evaluation shows whether conflicting situations have been resolved without intro-
ducing new ones and if the changes on higher spatial levels (e.g. for the respective category) lie within the
defined tolerance settings. Because of the nature of polygons mosaics, values of measures can change even for
objects or categories that have already been treated. This step involves quantitative as well as visual methods
since it is, as we have mentioned, not possible to fully formalize concepts relating to the overall visual appear-
ance of a map (Gestalt constraints). Furthermore, it will most likely not be possible to eliminate all conflicts
completely in complex situations. Although we provide the means to assess the severity of a conflict automati-
cally (e.g. priority tables for topological conflicts) and act accordingly, some problems might have to be resolved



Fourth ICA Workshop on Progress in Automated Map Generalization, Beijing, 2-4 August 2001 20

manually on a case-by-case basis. The final result of the evaluation stage is either to accept the computed
solutions and proceed with the next step or to reject them. In this situation the transformations are revoked at
least partly and the step is repeated with different settings and/or different methods. If a transformation sequence
fails completely, it is also possible to backtrack further and revise the strategy in an appropriate way.

6. Conclusions and Outlook

Looking at the number of measures in chapter 4 and their distribution among the different sections, we notice
that it is obviously much easier to find suitable measures for the formal description of graphic constraints. The
majority of them can be considered generic since they are used to identify local conflicts that occur in all types
of categorical data or relate to general structural properties of a dataset. The area and distance measures are,
together with some of the shape and topology indicators, part of our core set of measurements and we compute
(and recompute) them for every map we have to generalize. The global structural measures in these sections of
chapter 4, however, can be problematic. It is not yet completely clear whether and how we will be able to inter-
pret these values correctly and establish a logical link between changes of values and a positive or negative de-
velopment of the situation on the map. We expect that extensive empirical testing with datasets of different
spatial variability and for different target scales will be necessary until we can use these measures reliably to
their full potential. Shape is also a very difficult to formalize concept. In general it is difficult to associate a char-
acteristic shape with a specific category in most types of categorical data. We can think of very few cases where
this is possible and have therefore provided an appropriate measure. The class of shape index measures is only of
limited use because their values are normally not unambiguous; many configurations can have the same value.
We will use them with care and only for comparing values before and after generalization transformations.
Again, empirical testing will be required to decide which changes are acceptable and which are not. Our strategy
so far is to use shape measures mainly at the level of an individual polygon for conflict identification. If needed,
we will also experiment with more robust shape measures such as Fourier descriptors.

The problems of the measures we have introduced for density and distribution and for pattern and alignment are
of a different nature. The methods to precisely assess the density and the distribution of objects on a map are
very complex and time consuming since they require extensive distance calculations between polygons. At this
point, we doubt if such detailed quantitative information is really necessary. The measures we have introduced
for this purpose can be seen as a compromise. The category convex hull measure for example allows only esti-
mating changes in the distribution of objects in a qualitative way but, on the other hand, it can be computed
relatively fast and we think it should be precise enough for the purpose we need it for, especially if we combine
the method with the regular grid as illustrated in figure 8. A major drawback of this method is that it can only be
computed after completion of the transformations. If we reject the results, the entire transformation step has to be
revoked and repeated with different parameter settings or by using alternative methods. The measures we have
introduced for patterns and alignments may at first be disappointing from the scientific perspective because we
propose to identify such structures manually. Considering the complex structure of polygon mosaics with a high
spatial variability, we find it rather unlikely that automatic methods will deliver correct and robust results. There-
fore we have decided to concentrate on more promising issues for the time being. However, we will probably try
to implement automatic methods at a later stage for specific data types such as forest maps with only two catego-
ries.

The work executed so far was focusing on completeness and the majority of the measures we have introduced
are rather generic. So far, we did not yet respect any platform dependent issues nor did we consider any specific
requirement of particular generalization algorithms. This will change in the next step when we start with the
implementation of measures as part of a system for the (semi-) automatic generalization of categorical data. We
have decided to use Laser-Scan’s LAMPS2 platform. Because our department was a member of the consortium
which developed an agent-based system for the automatic generalization of topographic maps for LAMPS2
(AGENT 2001), we hope to benefit from the existing knowledge and experience. Besides some basic measures
that every GI System provides (e.g. area), we hope that other useful functionality resulting from the AGENT
project like the computation of the convex hull for a set of points can easily be adopted for our purposes. One of
the next steps will also be to study how topology measures can be best implemented in the LAMPS2 environ-
ment. Another very important issue is the harmonization of measures and generalization algorithms. The gener-
alization algorithm part of the generalization system is taken care of by Martin Galanda (Galanda 2001). Since
this project is also in an early phase, we cannot give further details at the moment. It is clear, however, that more
flexibility is required from the measures side than from the generalization algorithm side. It can therefore be
expected that the set of measures we have defined in this paper will have to be revised, extended, and modified
in the course of the project.
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