Challenges of Information Society for Map Generalization

Finnish Geodetic Institute - FGI
Department of Geoinformatics and Cartography
PO Box 15
02431 Masala
Finland

Tiina Sarjakoski and Lassi Lehto
Tiina.Sarjakoski@fgi.fi Lassi.Lehto@fgi.fi
Outline

- Changes due to the Information Society
- Characteristics of Web/mobile maps
- XML and XSLT in real-time generalization
- Prototype at the Finnish Geodetic Institute
- Summary
Changing World

- changes in information infrastructure due to the advances in communication technologies: the Internet and mobile networks
- placeless accessibility: any-where/any-time
- spontaneous use
- interaction, virtual world, navigation
- dissemination of (geospatial) information: any-one/any-where/any-time/any-scale
Maps in the Internet

- Characteristics
 - temporary map displays
 - maps are used as searching mechanisms
 - maps as a clickable interface
 (Kraak&Brown,2000)
 - preview of geospatial data to be downloaded
 - easy to use (to pan, zoom, select layers)
 - integrated multimedia components (sound, images, video, animation)
Web map services providing varying scales

- pre-created raster datasets
- alternatively, continuous scale variation by zooming, no change in contents
- no arbitrary scales with generalized map display
- updated geo-database results in recreation and storing of new datasets
Restrictions of mobile devices

- small displays, limited processing power, internal memory
- only the most essential information can be displayed
- often monochrome, rather low resolution displays
 - compare: Nokia 9210 Communicator
Mobile maps

- service oriented use, navigation, rescue situations, management of pipelines
- show relative importance of the map objects, i.e. visual hierarchy of map content
- relative locations between objects important
- objects can be used to access the second level of information content
- maps do not usually have any specific scale since they can be zoomed in and out
- high degree of generalization
- location of the user
Real-time generalization

- generalized datasets are not stored beforehand in the geo-database, provides arbitrary scales
- computed during the request-response dialogue, in real time in the network
- unsupervised; no chance to check the result
- destined to one individual end user
- user location
Examples on Techniques used

- Extensible Markup Language, XML
 - Syntax for structured data encoding
 - Licence-free, platform-independent, well-supported

- Geography Markup Language, GML
 - Developed by Open GIS Consortium (OGC)
 - Based on Simple Features Specification
 - Point, LineString, Polygon; linear geometry

- Extensible Stylesheet Language Transformations, XSLT
 - W3C Recommendation 16th Nov 1999
 - Transforming an XML doc into another XML doc
 - Transformation run by an XSLT Processor
 - MSXML, Saxon, Xalan, XT ...

- Scalable Vector Graphics SVG
Prototype of FGI

- SIAS
- Apache
- Tomcat
- Xalan
- GML
- SVG
- SVG
- PNG
XSLT in generalization

- Real-time generalization of XML-encoded GI
 - Device, user preferences, location
- Selection easy to implement
 - Object class, properties, context, computations
- Simplification of geometries
- Aggregation
- Most operators need use of extension functions
 - e.g. a Java class-based extension
This is an SVG map image
Dynamic SVG map
Real-Time Generalization in Information Society

- network-based spatial data services
- visualization in small display devices, e.g. mobile phones etc.
- direct access to up-to-date geo-databases
- the position of the end user to be applied
- supplying the users with up-to-date GI anywhere/any-time/any-scale
Summary

- tools for real-time generalization needed
- XSLT, a promising tool for data transformations
- Real-time generalization as a case study
 - selection, simplification, aggregation
 - spatial operators as extension functions
- 3-tier prototype
 - SW, XSLT in Java servlet, SVG visualization