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ABSTRACT 
 
Multi-scale generalization changes the semantic and geometric resolutions of objects 
according to context defined by users. Although different strategies have been applied 
in the model-oriented generalization, the definition of the context is seldom crisp, which 
will cause uncertainties in the generalization results. Furthermore, the operations used in 
these strategies, such as aggregation/merging, will change the geometric, thematic and 
topological relationships between the objects. This will also create uncertainties in the 
generalization result. The objective of this research is to develop mechanisms for 
quality assessment in the model-oriented generalization. The questions to be answered 
in this research include what causes uncertainties in the model-oriented generalization, 
how they are propagated in the procedure and how to quantify and visualize them. A set 
of quality assessment indices is put forward to calibrate the uncertainties. A case study 
of a land use map is implemented to examine the geometry-driven and class-driven 
strategies for the model-oriented generalization. 
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1. Introduction 
 
Map generalization is the selection and simplified representation of detail appropriate to 
the scale and/or the purpose of a map (ICA 1973:173). It is a highly complex process by 
which the presence of geographical features within a map is reduced or modified in 
terms of their size, shape or numbers. It is carried out either for display, for data 
reduction or for analysis. There has been progress in recent years for generalization in 
algorithms or entire software systems (Müller et al., 1995a; Weibel & Jones, 1998; 
Richardson & Machaness, 1999).  
 
Multi-scale generalization usually changes the semantic and geometric resolutions of 
objects according to context defined by users. The definition of the contexts is seldom 
crisp, which will cause uncertainties in the generalization. Furthermore, the operations 
of generalization, such as aggregation/merging of objects, will change the geometric, 
thematic and topological relationships of the objects. This will create uncertainties in 
generalization. However, the assessment of the quality of generalization results has 
received relatively little attention in research so far (Müller et al., 1995b; Weibel & 
Dutton, 1999). Few exceptions can be found in the discussion of the effects of 
generalization on attribute accuracy in natural resource maps (João, 1995; Pairnho, 
1995). Recently, quality assessment has been incorporated into the automated 
generalization design by some constrains (Brazile, 1998; Weibel & Dutton, 1998). 
Although the quality of generalization is controlled by the constraints, only a particular 
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solution (operation or algorithm) for generalization is assessed (McMaster, 1987; Berg 
et al, 1995). In general, quantitative assessment methods are weak when multiple 
objects are involved or entire maps needs to be characterized. An integrated approach is 
needed to capture the more holistic elements of generalization (Weibel & Dutton, 1999, 
p. 150).  Although Ehrliholzer (1995) proposed to integrate quantitative measurements 
with qualitative judgments by cartographic experts, a comprehensive palette of 
evaluation methods and strategies, however, is not available, which is indispensable for 
progress in generalization research. 
 
Therefore, it is necessary to cast light on the study of uncertainties in generalization and 
provide a quality assessment of the generalization result. The objective of this research 
is to develop mechanisms for quality assessment in model-oriented generalization. We 
will study the uncertainties in generalization and provide the quality assessment of the 
result. The questions to be answered in this research include what causes uncertainties 
in generalization, how they are propagated in the procedure and how to quantify and 
visualize the quality of the generalization. 
 
The paper is organized as follows. Following the introduction, Section 2 presents the 
four strategies of model-oriented generalization. Section 3 investigates the uncertainties 
in generalization. It analyzes the causes of uncertainties and how they are propagated in 
generalization operations. The approach for evaluating and representing uncertainties in 
generalization is discussed in Section 4. It is followed by a case study in Section 5. The 
generalization of a land use map is presented by using the geometry-driven and class-
driven strategies. Section 6 discusses the results and provides the guidelines for quality 
control in these two strategies. Finally, the last section, Section 7, summarizes and 
concludes the paper. The direction for further research is also presented in this section. 
 
 
2. Strategies Of Model-Oriented Generalization 
 
There are two main branches in digital cartography and GIS: cartographic 
generalization and database (or model-oriented) generalization (Weibel & Jones, 1998). 
Cartographic generalization represents the process of deriving a graphic product or 
visualization from a source database. In cartographic generalization clarity and logical 
consistency of graphic expression are given priority over positional accuracy and 
completeness. Model-oriented generalization concentrates on the derivation of reduced 
database from source database. It may be carried out for various purposes, in order to 
control data reduction or to derive data sets of reduced accuracy and/or resolution; or as 
a pre-process step to cartographic generalization (Weibel & Dutton, 1999). It prioritizes 
spatial accuracy and completeness based on processes that can be modeled formally.  
 
Four strategies are usually applied in the model-oriented generalization (Molenaar, 
1998).  
 
Geometry-driven generalization is a strategy where the geometric resolution is the 
driving factor of the aggregation process. Objects are aggregated to form new objects 
that are large enough to be represented. After generalization the adjacent objects might 
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belong to the same type. Changing resolution of grid of raster images is a typical 
geometry-driven approach. 
 
The class-driven generalization is a strategy where regions consisting of mutually 
adjacent objects that belong to the same class are aggregated to form larger spatial units 
with uniform thematic characteristics. A consequence of class-driven generalization is 
that after aggregation there are no two adjacent regions that are of the same type. The 
generalization of a land use database according to the land hierarchical classification 
scheme can be considered as a class-driven generalization.   
 
Function-driven generalization aggregates spatial objects at a low aggregation level to 
form new objects at a higher level, according to the aggregation hierarchy based upon 
functional relations between objects. For example, the aggregation of area of residential 
houses and area of green land around the houses as a residential area is a functional 
approach. 
 
Structure-driven generalization simplifies the description of a network system, while 
keeping the overall structure intact. The total functioning of the system after 
generalization can be understood at a less detailed level. For example, the branches of a 
stream are usually reduced based upon the structure of the stream. 
 
These four strategies might be applied simultaneously to the generalization of a single 
database, though they are different in terms of selection criteria and alteration of 
resolution (see Table 1). For the geometry-driven strategy, the geometric criterion (e.g. 
size) has the first priority, and then the topologic criterion (e.g. adjacency) is applied. 
Under such strategy, the spatial resolution is changed as required, and the thematic 
resolution is also adjusted. For the class-driven strategy, however, the thematic criterion 
has the first priority, and then the topologic criterion is applied. Under such approach, 
the thematic resolution is reduced with the adjustment of spatial resolution. Other two 
strategies please refer to Table 1. 
 

Table 1. Comparison of four strategies of model-oriented generalization. 
Order of Selection Criteria Resolution Strategy 

Thematic Geometric Topologic Spatial Thematic 
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3. Uncertainties in Model-Oriented Generalization 
 
The four strategies mentioned above apply several operations to achieve the aim of 
generalization, e.g. to derive secondary scale and/or theme specific datasets or compose 
special-purpose maps. The operation defines the transformation that is to be achieved; 
and a generation algorithm is then used to implement the particular transformation. 
There are many operations used in generalization and the basic ones are simplification, 
selection/elimination/merging, aggregation, symbolization/collapse, exaggeration and 
displacement (McMaster & Shea, 1992; Weibel & Dutton, 1999). In order to derive the 
reduced model (or representation) of reality, these operations essential modify the 
geometry, topology and/or semantics of the objects from high-scale to low-scale.  
 
The operations, simplification and exaggeration only modify the metric aspects of the 
objects; selection, symbolization and aggregation essentially modify the topological 
aspects; and displacement is primary metric, but can involve topological changes in 
some cases (Dettori & Puppo, 1996, see Table 2). The changes in topology and 
geometry may result in semantic changes, and vice versa. The topological changes 
indirectly imply metric changes as well, but not vice versa. That’s why uncertainties are 
created in generalization. For instance, where the real world distance between a lake and 
village is too small at a give scale to graphically display the railroad and the road 
between the edge of the lake and the village there is a representation conflict. 
Displacement is a solution, but leads to loss in positional accuracy (Harvey & Vauglin, 
1998). Further, due to the missing of the (rail)roads, the semantics of the map also 
change, which leads to loss in the thematic accuracy. 
 
 
Table 2. The modification of metric and topological aspects by operations (Dettori & 
Puppo, 1996, pp. 565). 
 Model-Oriented Cartographic 
Only metric aspects Simplification Exaggeration 

Displacement 
Topological Aspects Selection 

Aggregation 
Symbolization 

Displacement 

 
 
As for model-oriented generalization, the basic operations are merging (elimination) 
and aggregation (Molenaar, 1998). Here merging is referred to a process to eliminate 
small areas or sub-polygons, i.e., objects are put together to build a composite object. 
After the merging process, the original objects cease to exist. Whereas aggregation 
refers to the process which deletes edges between similar objects and form a composite 
object. The semantics of the original objects are then transferred to the new composite 
object, but the original objects do not cease to exist. Since the merging is usually done 
based upon the neighbor that has the largest border or the largest area, it is actually a 
geometry-driven approach. Because the aggregation is usually implemented based upon 
a common thematic characteristic with its neighbors, it is actually a class-driven 
approach.  
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 Here we analyze the uncertainties in these two operations. Although these two 
operations can be applied to point, line and area objects (Weibel & Dutton, 1999), we 
mainly consider the area objects since they are most complicated situations. Further, we 
will concentrate on the semantic changes after generalization because of the 
fundamental role of semantics for modeling and representation geographic methods 
(Harvey et al., 1998, p. 559), i.e., “the relationship between the degree of resolution and 
accuracy definitely cannot by determined solely by the scale or dimensions of a map, 
but rather by its semantics”. It is also because the semantic change after generalization 
has been seldom studied, compared with the other two aspects, geometry and topology.   
 
3.1 Uncertainty in Merging  
 
In merging, the semantics of the original objects is changed to the new object. If the 
semantics of the original objects is different from the new one, uncertainty in semantics 
will be created.  Let’s analyze the uncertainties of the generalization in two situations of 
merging. 
 
Case (1) 
 
The first case is that a small area which is adjacent to several larger areas. We assume 
that D is a small area and is merged into A. We use A’ to represent the area after 
generalization, although in the database it is still represented as A (see Figure 1).  
 
 
 
 
 
 
 

 
 

Figure 1. Case (1) - Small area D is merged into one of its adjacent area A. 
 

 
If A and D are not thematically similar, the certainty (or uncertainty) of the new area A’ 
can be expressed as: 
 

)()(
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' DAreaAArea
AAreau AC

A +
=         (1) 

where AC

Au ' represent the uncertainty of area A’ belongs to Class A (CA). 
 
If area D is merged into B or C, their uncertainty can be expressed as: 
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Case (2) 
 
The second case is that a small area D is contained in (or isolated by) a large area A. 
After generalization, it is merged into A. We use A’ to represent the area after 
generalization, although in the database it is still represented as A (See Figure 2). 
 
 
 
 
 
 
 
 

 
 

Figure 2. Case (2) - Small area D is merged into its adjacent Area A. 
 

 
The uncertainty of the new area A’ can be expressed as: 

)()(
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' DAreaAArea
AAreau AC

A +
=        (4) 

 
If we compare Equation 1 with 2 and 3, we may unify them into a general case to 
represent the uncertainty of the new area A’, as in Equation 5, 
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In Equation 5 we assume that Area A and D are crisp objects which belong to Class A 
and D, respectively and certainly.  
 
If Area A and D are fuzzy objects (Cheng & Molenaar, 1999), i.e., they belong to 
Classes A and D with membership functions as { DA C

A

C

A uu , }T and { DA C

D

C

D uu , }T, 
respectively, the thematic uncertainty of A’ can be represented as: 
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When Area A belongs to Class A certainly, i.e., 1=AC

Au , and Area D does not belongs to 
Class A, i.e., 0=AC

Du , Equation 6 becomes Equations 5. If 1=AC

Au and 1=AC

Du , then 

A 
B 

C 

D 

A’ 
B 
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1' =AC

Au , i.e., if A and D are thematically similar, there is no uncertainty after the 
merging operation. Therefore, Equation 6 is a general description of uncertainty of the 
merging operation.  
 
 
3.2 Uncertainty in Aggregation  
 
We assume there are five areas A1, A2, A3, B1, and B2 as shown in Figure 3a. These five 
areas belong to Class A (CA) and Class B (CB) (c.f. Figure 3b). After aggregation two 
areas A and B are formed (c. f. Figure 3c). 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. The case of Aggregation. 
 
 

Similar to Equation 6, the uncertainty of Area A can be represented as: 
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where AC

Au represent the uncertainty that area A belongs to Class A (CA). 
 
If A1, A2, A3 belong to Class A certainly, then 
 

1
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It means that when the aggregated areas belong to a same thematic class, the new area 
has no uncertainty. 
 
As can be seen from Equations 6 and 7, thematic uncertainty will be created after 
generalization when the areas that are not thematically similar are merged or aggregated 
into a new area.  
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4. Quality Assessment and Visualization 
As argued in the section of introduction, a holistic evaluation is required in order to 
provide the quality of the generalization. Since data quality of GIS contains components 
of accuracy, precision/resolution, consistency and completeness (Veregin & Hargitai, 
1995), we will try to derive the quality indices of generalization according to these four 
components. Although space, time and theme are three essential dimensions of 
geographical data, the major concerns for generalization quality evaluation are the space 
and theme, i.e., geometry (metric & topology) and semantics. A matrix of geographical 
dimensions (columns) and data quality components (rows) of generalization is shown in 
Table 3.  
 
Table 3. A matrix showing geographical dimensions (columns) and data quality 
components (row) of generalization (after Veregin & Hargitai, 1995). 
 Metric Topology Semantics Time 
Accuracy Positional 

accuracy 
 *Thematic 

uncertainties 
/ 

Resolution Minimum 
mapping units 

 Lowest 
classification 

/ 

Consistency Area difference 
per class 

*Topological 
change 

Redundant or 
contradictions 

/ 

Completeness Missing part of 
the area in the 
specification 

 Missing classes / 

 
 
 
Therefore, the following quality indices are proposed. 
 
(1) Accuracy -- Certainty index 
 
The accuracy of semantics can be described by the certainty index for the new area 
objects created after generalization. Equation 6 and 7 describe the certainty of the area 
object created from merging and aggregation, it can be adapted to all the objects created 
after generalization.  

∑
∑ ∗

=
areaoriginal

KClasstobelongingcertainty its areaoriginal
KClassto belonging object area newofcertainty 

  (9) 

 
(2) Consistency  
 
(a) Object reduction index 
In order to describe the topological change after the generalization, an object reduction 
index is defined as in Equation 8 (after Bregt & Bulers, 1996): 

tiongeneralizabeforeobjectsareaofnumber
tiongeneralizaafterobjectsareaofnumberreducedindexreductionobject =  (10) 
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 (b) Attribute change index 
Daley et al (1997) compare the percentage area by class of original with generalization. 
It can be used to describe the consistency of semantics. But Daley’s approach emphases 
the difference in area by per class. An overall indicator of consistency of semantics is 
needed. The attribute change index, proposed in (Bregt & Bulens, 1996), is adopted. 

surfacetotal
classpersdifferenceareaabsoluteofsumindexchangeattribute =  (11) 

 
(c) Topology change index 
The consistency in topology can be expressed as topology change index: 
 

objectstotalofnumber
ytopochangeobjectsofnumberindexchangeytopo loglog =   (12) 

 
 
(3) Resolution 
 
The size of the minimum mapping unit and the lowest level of thematic classification 
can express the quality in resolution. 
 
(4) Completeness 
 
 As for the geometric completeness, it can be detected by overlaying the generalization 
results with original data before generalization. As for the semantic completeness, we 
may check if any thematic class loses after generalization. 
 
(5) Visualization 
 
It is pointed out in Beard and Buttenfield (1999) that the error analysis method is 
associated with the graphic display modes and are necessarily bundled together. The 
current author believes that there are several ways to visualize the quality of 
generalization. In order to show the certainty of the semantics, the whole new area with 
its certainty index can be visualized as a fuzzy area (see Figure 4a, Figure 6c). Since the 
consistency in semantics and topology can be measured quantitatively, it can be 
calculated and reported as shown in Tables 4 and 5. They can also be visualized by 
indicating the objects that are merged or aggregated into other objects with their 
thematic values (as shown in Figures 4b, 7a & 7b). It can also be visualized by 
highlighting the original objects that change their thematic values after generalization 
(Figures 4c). The change in topology is more difficult to detect except the reduction of 
objects, but it can be detected by comparing the intersection of the original data with the 
generalization result. The objects that have different boundaries can be visualized as in 
Figures 11b & 12b. Other two indices, completeness and resolution can be described 
quantitatively and are quite straightforward.  
 
 
 
 



 

10 

 
 
 
 
 
 
 
 
 

Figure 4. Visualizing uncertainties in generalization. 
 

 
5. Case Study 
 
We have a land use map with two level thematic classifications (which we assume to be 
free of uncertainty). Figure 5a shows the land use type at low level, and Figure 5b 
shows the types at high level. The objects identified at low level are shown in Figure 5c. 
This section uses this land use case to examine the influence of operation on 
generalization. We mainly study the uncertainties in the geometry and the class driven 
strategies.  
 
 

     
 

 
Figure 5. The land use map at two level thematic scales. 

 
 
 
(1) the geometry-driven strategy 
 
Since there are very small regions in the map, we use the merging operation to eliminate 
them. There are two algorithms to implement the merging. The first one is to merge the 
selected polygons with neighboring polygons that have the largest shared bored between 
them. The second one is to merge the polygons with neighboring polygons that have the 
largest area. Here we use these two algorithms and try to compare their difference. In 
order to check the influence of minimum-mapping unit (spatial resolution) - MMU, 
three threshold values (1000, 2000 and 4000) are applied. Figure 6a and 6b shows the 
merged results based upon largest area and border respectively, with the MMU= 2000. 
Figure 6c represent the certainties of Figure 6b. 
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Figure 6. The merged results based upon the largest border 
 
 
Table 4 summarizes the quality of generalization based upon th
three MMUs. It can be seen from Table 4 that the number of
areas of objects in each class are changing with the threshold va
also be seen the attribute change is increasing with the thres
reduction of object numbers. But the change degree of attribute
that of object reduction. Although the number of objects merg
the same, the indices of the area change are slightly different an
largest border is lower. 
 
Table 4. Quality assessment of the merged results based upon g

No. of  Objects Sum of Area
per class 

MMU 

Before After 

Object 
Merged 

Object 
Reduction 
Index A 

1000 425 386 39 0.092 30596.06 
2000 425 333 92 0.2165 149989.28 
4000 425 246 179 0.4212 599078.40 
(A and B represents the merging based upon the neighbor that
has the largest shared border, respectively). 

(a) (b)  

(c) 
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and the largest area. 

ese two algorithms with 
 objects in total and the 
lues of the MMU. It can 
hold value. So does the 
 is relatively lower than 

ed in two algorithms are 
d the change based upon 

eometry-driven strategy. 
 Difference Attribute Change 

Index 
B A B 

29931.74 0.0063 0.0061 
133887.30 0.0308 0.0275 
422151.82 0.1230 0.0867 

 has the largest area and 



 

12 

Table 4 provides the quality assessment for the whole map. We can also check the 
merged areas in detail; i.e. check their thematic values after generalization with their 
origins. The graphic visualization of the change is revealed in Figure 7. The difference 
between these results with original map is reported in Table 5. Averagely, 80% and 74% 
changed their thematic classes dramatically after merging. Also we found from Table 5 
that generalization result is better based upon the largest border.  
 
 

                    
 

 
 
Figure 7. Visualizing the quality index of generalization.  
Figure A represents their class type after generalization based upon largest area, Figure B represents their 
class type after generalization based upon largest border, and Figure C represents their original class type, 
 
 
Table 5. Difference of the merged results with original map at the high thematic level. 

Difference (A&O) Difference (B&O) Difference (A&B) Threshold 
Value 

Object 
Merged Object Ratio (%) Object  Ratio (%) Object Ratio (%) 

1000 39 32 82.1 30 76.9 9 23.1 
2000 92 73| 91* 79.3  68 |90* 73.9 31| 31* 33.7 
4000 179 145 81.0 130 72.6 69 38.5 
Average   80%  74%   
(*Difference of the merged results with original map at the low thematic level. A and B represents the 
merging based upon the neighbor that has the largest area and has the largest shared border, respectively)         

 
 

(a) (b) 

(c) 
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(2) the class-driven strategy 
 
The class-driven strategy is implemented by dissolving the boundaries between the 
mutually adjacent objects of a same land use type, i.e. they are aggregated into a new 
object. 
 
The aggregation results are shown in Figure 8. Figure 8a shows the result of aggregation 
based upon the low-level land use, while Figure 8b shows the results based upon the 
high-level land use. 
 
 

            
 

Figure 8. Generalization results based upon the class-driven strategy. 
 
 

Table 6 reports the quality indices of generalization. It can be seen that the attribute 
change index is very low at two thematic scales, but the index of the object reduction is 
quite high, especially at high thematic scale, almost 30%. 
 
 

Table 6. Quality assessment of the class-driven strategy at two thematic scales. 
Object No. Index  

Scale Before After
Sum of Surface 

Difference  Attribute 
change 

Object 
reduction 

Low 425 393 0.0530 0 0.08 
High 425 282 0.0403 0 0.34 

 
 
6. DISCUSSION 
 
This section analyzes the results in the case study of Section 5 in order to provide 
quality control of generalization. 
 
(1) the geometry-driven strategy 
 
For different minimum mapping units, the difference between attribute change and 
object reduction is obvious (see Table 4). The change of attribute is around 1% to 9% 

(a) (b) 
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and the reduction of object number is around 10% to 40%. The degrees of change in 
both aspects all increase with the size of the MMU. It implies that the uncertainty in 
semantics is increasing with the size of the MMU. 
 
 (2) the class-driven strategy 
 
The class-driven strategy generalizes the map based up the thematic value of the 
adjacent polygons, i.e. the polygons that belong to same classes are aggregated into one. 
Therefore, the class-driven strategy only reduces the object numbers without changing 
their attributes. It implies the uncertainty in semantics by this strategy does not make 
much difference for different thematic scales, but the change in topology is increasing 
with the aggregation scale.   
 
(3) comparison of two strategies 
 
Since three threshold values of MMU are applied in the geometry-driven strategies, it is 
difficult to compare the results with those obtained by the class-driven strategies. But 
we find the result obtained at MMU=1000 is closer to the class-driven result at low 
thematic level (see Table 7). Still we can find that the numbers of the objects in these 
two strategies are slightly different. There are 386 objects (MMU=1000) in the 
geometry-driven generalization and 393 objects in the class-driven generalization. This 
is due to the fact that the adjacent objects belonging to a same class are aggregated into 
one object in the class-driven strategy, while in the geometry-driven case they are still 
separate objects. But there are smaller regions (less than 1000) in the class-driven 
results, which are merged out in the geometry-driven strategy. 
 
        Table 7. Comparison of the geometry-driven and the class-driven strategies.   

Object No. Index  
Scale Before After

Sum of Surface 
Difference  Attribute 

change 
Object 

reduction 
MPU=
1000 

425 386 29931.74 0.0061 0.92 

Low 425 393 0.053 0 0.08 
 
 

(4) comparison of the combination order 
 
In order to check if there is any influence of the order of the operations, we generalize 
the same map (Figure 5 above) by two strategies in different combination orders. We 
apply the aggregation (class-driven) to Figure 6a at two thematic scales, i.e. dissolve the 
boundaries between adjacent polygons, which have same land use type at low level, and 
high level respectively. We obtained the results shown in Figures (9A, 9C) and (9B, 
9D). Therefore, Figure 9 represent the results by combining firstly geometry-driven, 
then class-driven strategies. 
 
Figure 10 is the generalization results of Figure8A and 8B after eliminate the polygons 
which are smaller than 2000. It represents the results obtained by first class-driven then 
geometry-driven strategies. 
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Figure 9 Results obtained by first geometry-driven then class-driven strategies. 
(A) low level class type  (B) high level class type 

(C) low level objects   (D) high level objects 
 
 
Table 8 and Table 9 report the quality indices for two combinations at two thematic 
scales.  
 
 

  Table 8. Combination of the geometry-driven and class-driven strategies at low 
thematic scale. 

 Number of Objects 
 Before After 

Difference of 
Area 

Index of Attribute 
Change 

Index of Object 
reduction 

GC 425 303 133887.4 0.027 0.29 
CG 425 304 127746.3 0.026 0.28 

   
 

Table 9. Combination of the geometry-driven and class-driven strategies at high 
thematic scale. 

 Number of Objects 
 Before After 

Difference of 
Area 

Index of Attribute 
Change 

Object 
reduction 

GC 425 228 84275.9 0.017 0.463 
CG 425 230 76486.4 0.016 0.459 

(a) (b) 

(c) (d) 



 

16 

 

             
 

               
 

Figure 10. Results obtained by first class-driven then geometry-driven strategies 
(A) low level class types (B) high level class type 
(C) low level objects   (D) high level objects 

 
 

As shown in Tables 8 and 9, there is no obvious difference in the attribute change and 
object reduction between the two combinations, i.e. first apply the class-driven, then 
apply the geometry-driven; or firstly apply the geometry-driven, then apply the class-
driven strategies. But the finial results between two thematic scales are quite different. It 
implies the combination of operations is quite sensitive to the thematic scale. But are 
there any differences between the finial results of the two combinations? We find they 
are lightly different in thematic values and much different in topologies, and the 
differences in these two aspects are larger at the high thematic scale than at the low 
thematic scale (see Figure 11 and 12).  

 
(5) Comparison of Raster and Vector approaches 
 
In a previous paper of the present author (Cheng & Lin, 2000), a raster model has been 
applied to study the uncertainty in the model-oriented generalization, because it is able 
to accommodate impression and uncertainty more easily than conventional vector 
(cartographic) models. Here we get a similar conclusion as we got before. As for 
geometry-driven strategy, the MMU influence the quality of generalization; as for the 

(a) (b) 

(c) (d) 



 

class-driven strategy, the thematic scale does not influence the quality of semantics but 
the change of topology. Our finding is in the same tune with Daley et al’s (1997), i.e., 
there were no significant difference in area per class between the raster approach and 
the vector approach. Therefore, if the original data are raster-based, a raster-based 
generalization approach should be applied. Otherwise, a vector-based approach can be 
applied. But a raster-based approach does have advantage in certainty analysis (see also 
Beard & Buttenfield, 1999). 
 

  
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 

Figure 11. Difference between GC and CG at low thematic scale. 
Figure A indicate 2 objects that have different thematic values; Figure B highlights 8 objects that
have different topologies. 

(a) (b) 

(a) 
(b) 
Figure 12. Difference between GC and CG at high thematic scale. 
Figure A indicates that 10 objects have different thematic values; Figure B highlights 36 objects that
have different topologies.  
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7. CONCLUSIONS 
 
The objective of this paper was to develop mechanisms for quality assessment in the 
model-oriented generalization. To achieve that, we investigated the strategies of the 
model-oriented generalization, and analyzed the uncertainties in these strategies. Special 
attention is given to the uncertainty in semantics created in the merging and aggregation 
operations. We proposed the quantitative indices for holistic quality assessment of the 
generalization. The graphic visualizations of the quality were also discussed.  Further, 
generalization of a land use map has been implemented to examine the geometry-driven 
and class-driven strategies. The generalization results have been thoroughly analyzed 
and discussed in order to check the influence of spatial resolution (the MMU) and the 
thematic resolution (thematic scale) on the qualities created by these two strategies. 
 
It was shown in our case study that a proper scale and proper strategy should be chosen 
for a specific generalization case. In order to keep the thematic semantics of objects the 
class-driven strategy should be applied. However, a proper spatial scale (the MMU) 
should be selected for the geometry-driven strategy so as to preserve the geometric 
shape of objects and certainty of generalization. In order to achieve best visualization 
after generalization, the two strategies can be combined, e.g., the class-driven strategy is 
firstly used to derive the generalization result with low thematic uncertainty, and then 
the geometry-driven strategy is adopted to remove small regions.  
 
As for further research, the other two strategies, i.e., the function-driven and structure-
driven should be discussed to compare them with the existing results. What we may tell 
now is that the function-driven strategy is quite similar to the class-driven strategy. But 
the structure-driven strategy needs further effort because it deals with the structure, not 
the thematic attribute or pure metric in our case. Furthermore, we only discussed the 
situation in which the original source data have no uncertainty. It is necessary to study 
the situation where there is uncertainty in source data in further research. Moreover, we 
only discuss the operation of merging and aggregation. How to apply the quality 
assessment indices to other model-oriented operations needs more practice, although we 
believe they are general and applicable. In general, the study on quality assessment of 
generalization just begins; more efforts are required to open the fuzzy face of 
generalization. 
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