Automatic generation of a view to a geographical
database.

Mats Dunkars
SWECO Position
mats.dunkars@sweco.se

Abstract

This paper concerns object oriented modelling and automatic generalisation of
geographic information. The focus however is not on traditional paper maps,
but on screen maps that are automatically generated from a geographical
database. Object oriented modelling is used to design screen maps that are
equipped with methods that automatically extracts information from a
geographical database, generalises the information and displays it on a
screen.

Keywords

Object Oriented Modelling, The Unified Modelling Language, Digital
Cartography, Automated Map Generalisation

Introduction

Object oriented modelling in geographical information is often used to design
the database. This paper takes a different approach and uses object oriented
modelling to design screen maps that are part of a user interface. The
algorithms and parameters that determine how the generalisation shall be
performed is stored within the object classes that belong to the screen map
rather than being stored in the database. Most objects (roads, railways,
houses) shall be generalised differently in different map contexts. If this
knowledge is stored within the database this implies that we need to store a
large set of different generalisation algorithms and parameters for the general
object class in the database and also information about which algorithm and
parameters to use for which map series. In this paper the database contains
multi-purpose object classes and objects that are stored with as high accuracy
as possible in a general database, but has no information on how to be
displayed or generalised. This is stored in the object classes that belong to a
certain user interface.

A model has been designed using the Unified Modelling Language (UML)
which is described by Booch et al. (1999). This model consists of a set of
typical object classes in a topographical map and has been partly
implemented within the Geographic Information System LAMPS2.

Design criteria

According to Booch et al. (1999) a model is a simplification of reality to solve a
certain problem. The problem addressed here is how to generate a user
interface that retrieves information from one or several geographical
databases and generalises the information before it is displayed in a map. A
typical example is a municipal GIS which consists of several databases that
are owned, maintained and updated continuously by different organisations.
Several different users such as urban planners, the environmental agency,
maintenance personnel of the different utility departments, the fire department
etc combine information from different geographical databases and use their
own symbolisation to highlight certain aspects of a problem. There is an
obvious risk that this will lead to conflicts due to lack of generalisation.

The user interface that is considered here is typically rather simple and
designed for a particular user group. It gives the user the ability to view a map
and zoom in and out to get an overview or to see details. The information that
is displayed changes with scale. The user can retrieve additional information
about the objects that are shown in a view, such as the owner of a house. It is
also possible to perform different analyses depending on the application. In a
car navigation system for instance it is possible to find the best route and to
compute distances between locations. The view to the database is static in a
sense that the user can not add additional information to the view. The user
can choose to see subsets of the information that is available to a view
however, by marking information in a legend

General Design

The user-interface should have the ability to zoom in and out and to see
information at various levels of resolution. In the model that is presented here
this is handled by letting the user-interface consist of static maps defined at
different scales. As the user zooms the appropriate map is shown. This is a
simpler approach than the one presented by Petzold et al. (1999) that has
automatic name placement that is continuously changing with scale. However,
a map that is constantly changing even with small changes in resolution might
be rather confusing to the map-reader.

A static map that is a part of a user-interface will be called a level for the
remaining part of this paper and the issue is how the level is generated. A
level has the following characteristics:

« Alevelis static and is defined to be viewed at a certain scale range.

¢ An object class is defined in one and only one level.

« The representation is defined for each object class, which means that an
object class can only be represented in one way.

This implies that a category, such as building, will be represented by several
object classes where each of these object classes is defined for a certain
level.

When a new level is defined the cartographer creates a data model for the
level. He defines the object classes that are members of the level, how they
are represented in the level, the requirements for preservation of topological
constraints between the different object classes etc. He also equips the object
classes with methods that retrieve and analyse information from one or
several databases, generalises the information and instantiates new objects.
When all is defined, objects that are members of the level can be instantiated.
As the new objects are created an analysis is performed in the new level to
find a suitable location that does not cause conflicts with objects that already
have been created.

Small scale
level (empty)

Analysis Data

¢ ‘ Large scale
level or data base

Figure 1 Generalisation

If the new objects create conflicts in the map that can not be solved it can be
decided not to create the object or perhaps to merge the new object with an
already existing object. What is done depends on the application and the
object classes involved. The analysis is performed at two levels
simultaneously: the data source and the level that is being created.

Based on these ideas a model has been created that contains a subset of
categories from a topographical map. The categories have been chosen to get
a wide representation of different types of geographical categories that interact
in different ways.

The Model

The model consists of two levels: the green and the blue level. The green level
is defined at the scale of 1:10 000 and is the base level which is initially filled
with data from the National Land Survey of Sweden (NLS). The blue level is
automatically created by retrieving and analysing data from the green level.
Depending on the choice of symbolisation and generalisation parameters the
blue level can be instantiated at scales in a range from 1:30 000 to 1:100 000.
In general there are no requirements on the how the source data shall be
structured. In this model however it is assumed that all linear objects form a

node-link structure, called a network and that the surface objects form a
complete surface cover without any gaps.

BI_Street Bl_Road
BI_Stream BI_Rail_Bridge
BI_Forest 0.1 0.1
0.1 11] 0.1 0.1
1 ‘ﬁ Bl_Road_Bridge
1 Level 1 v
0..1
BI_Open 1 | 1 0.1 Bl_River
+Reset() -
+Generalise
1 +Solve_con9|cts() 1
Surface_cover()
0.1 Object_type_analysis() 0.1
BI_Lake .
- 4’—’1 31 ¢ BI_Rail
0.1 0.1 0.1 0.1
BI_Dwelling_House] Bl_Turn BI_Built_up BI_Station

Figure 2 A UML-diagram showing the Bl object classes are members of the
blue level.

Levels

Figure 2 shows the geographical object classes that are members of the blue
level. In figure 5 it is possible to see how the Road object class is split into
different road types. The connection between the object classes is an
aggregation meaning that a level consists of geographical objects. The green
level has a similar set of classes and contains the data while the blue level is
empty at the start. A process is initiated in the blue level and data is extracted
from the green level, analysed and inserted into the blue level. The process
ends when all seed objects (described below) in the green level have been
treated.

Inheritance

The model uses inheritance structures, which are shown in Figure 3. There
are three different inheritance structures for objects represented as points,
lines and areas. At the most general level is a virtual object class called
bl_Object. In this class the three methods Select(), Create() and Simplify() are
defined. These methods are later implemented further down in object class
hierarchy. All linear object classes inherit from the bl_Network object class.
There is an association within the class that describes how linear objects form
node-link structures. Most of the attributes concerning symbolisation and
constraints such as accuracy requirements or the minimum length an object
should have to be displayed at this level are defined in the bl_Network object
class. The values of the attributes are then given in the leaf object classes.

Object classes such as station and rail-bridge has associations with railroad.
These associations illustrate topological relations between these object
classes. A station or a rail-bridge has to be connected to a railroad.

Bl_Object

0.*
+Create()

+Select()
Simpli
0..* BI_Network +SITPY0

-Geom : Simple_Line|
-Min_Length : float BI_Rail_Bridge
-Straightness : float -7
-Symbol_width : float
-Accuracy : float
—D-Convex : float +Select()
+Simplify()

+Merge_geom()

+Annex() +Create()
Bl_Road | — 0.2
+Select() 2
+Create()
+Simpli
mpliy(BI_Stream BI_Rail 1
1 2
+Select() +Select()
+Create() +Create()
0.2 +Simplify() +Simplify()
0.1 +Annex()
Bl_Turn Bl_Road_Bridge BI_Station
-Min_size : int
+Create() +Create() 0..1 [*Create()
+Simplify() +Select() +Select()
+Select() +Simplify() +Simplify()

Figure 3 The inheritance structure of object classes in the blue level that are
represented with linear geometry.

In the initial stages of this work an attempt was made to model the
hydrographic network using multiple inheritance. The hydrographic network
includes both surface objects such as lakes and rivers and linear objects such
as streams. The idea was that the river object class to some extent has the
characteristics of a lake and to some extent has the characteristics of a stream
and ought to inherit functionality from both. As the functionality was thought
out in detail it turned out that functions that the river object had a need to
inherit where defined within the surface object class. The characteristics of the
network object class, the river class needs are the requirements on how data
should be structured. To make sure that crossings of linear featuras, e.g.
roads, and rivers are maintained properly the river is divided into a new object
at every crossing. Figure 4 shows how a river object is formed between two
road-bridges.

Figure 4 Example of a river object that ends where the road crosses the river.
There is also a split into separate objects where the two river objects meet.

The part of the road that crosses the river, the bridge, has different
requirements on how it shall be generalised compared other parts of the road.
A road bridge should be located "on" the river and other parts of the road
should be located "on" land. Therefore all road and railway bridges are treated
in separate classes. Where a road crosses a stream there is no need to form a
bridge for the purpose of generalisation. The node where the two objects
cross is maintained by the network structure.

The different road types are treated as separate road classes since they have
different symbolisation. As can be seen in figure 5 however they have the
Simplify() method in common which is implemented in the general Bl_Road
class. The only methods that are implemented in the leaf object classes are
Create() which is the constructor of the class and Select() which determines if
the information retrieved from the source database is suitable to instantiate a
new object(e.g. is this cul-de-sac long enough).

Bl_Road_Bridge
BI_Dirt_road
+Create()
+Select()
N Bl_Road +Select
+SimplifyQ B +Create(())
BI_Street
- +Select() ‘
-Priority : int :giﬁ?)tl?fyo() Bl_Forest_road
+Select()
+Create()
+Simplify() +Select(())
+Create
BI_Motorway Bl_Major_roadl
BI_Major_road2 BI_Minor_road
+Select() +Select()
+Create() +Create() +Select() +Select()
+Create() +Create()

Figure 5 Different road types inherit from the general road object class.

Dependencies

There is a part of the model that defines which objects might be effected if an
object is moved. This is illustrated using dependencies, which have a specific
meaning in this model. The lake class for instance has dependencies with all
other object classes. This means that if a lake object is moved, conflicts might
occur with objects of any other object class. In Figure 6 we see a diagram that
illustrates how the move of a house object effects objects in other classes.
The interesting information is what object classes are left out. As can be seen
the object classes bl_forest and bl_open are not considered to be effected
when a house object is moved. This means that, if a house object is located
“on” a forest object or “on” an open-area object is irrelevant in this level. This is
a design choice for this particular level and in a different level it might be
decided to let the house object class have dependencies to all other object
classes.

A change to BI_House migh
effect objects of classes below.

I
I
I
BI_Built_up ==

\
=% BI_Symbol

Bl_Network

BI_River

Figure 6 This figure illustrates which object classes that might be effected if a
house object is moved. A house may not be located on water or on the wrong
side of a road but it might be moved from a forest to an open area without
severely deteriorating the quality of the map.

Similar relations are created for each object class. Even though the house and
forest object classes do not have dependencies, they can effect each other
indirectly through other object classes. A house object, for instance, can be
moved in such a manner that it effects a lake object, which in turn, effects the
forest object when it is moved. All object classes in the level have direct or
indirect dependencies.

Links between levels

There are two types of links between object classes defined in different levels,
an association and a dependency, which is illustrated in Figure 7. The
association is formed for the object classes where the relation is intuitively
simple to form or where the relation is needed when the data in the new level
is created. The association between bl_lake and gr_lake is simple to form
since it is considered to be obvious which objects in the two classes that refer
to the same real world feature. The association between bl_river and gr_river
is more vague and forms a many-to-many relation.

BI_Lake BI_River i
_ BI_Road Bl_Road_Bridge
-Width : int
+Create() -Length : int Create()
+Select() +Create() +Select() +Select()
+Simplify() +Simplify() +Create() +Simplify()
+Island_select() +Select() +Simplify() T
T T T —
0.1 | 0.* | 0.* ! 0.1 «lInitiates»
1 . 1 . i I
«Initiates» «Initiates» “'”'“‘?tes» !
i i w !
| | | }
| * | |
1 1 L DL 1 1 1
A4 AV A4 AV
Gr_Lake Gr_River Gr_Road Gr_Road_Bridge

Figure 7 There are two kinds of links between object classes in different
levels, an association and a dependency.

The other relation that is formed between object classes is a dependency
called “initiate” that has a different meaning than the dependency in the former
section that illustrates topological relations. During the creation process the
object classes in the bl_level analyses the gr_level to find objects and groups
of objects that can form objects in the bl_level. The first part of this analysis is
to locate an object that can be a seed for the creation of objects in the
bl_level. The lake objects of the gr_lake class are the seeds for creation of
bl_lakes. The gr_houses and gr_built_up contains the seeds for the creation
the built-up areas in the bl_level. This relation is illustrated with the “initiate”
dependency.

Creation
The creation of new objects follows a similar pattern for all object classes.
However, since different object classes have different characteristics and

different relations to other object classes there are variations.

In general the creation of all objects in a class consists of the following steps.

1. The objects that can act as seeds to form objects in the bl level are
selected and stored in an array. The seed relations are shown with the
“initiate” dependency in Figure 7. The array is stepped through and the
objects are analysed one at a time. Step 2-4 is done for an object at a time
until the end of the array is reached.

2. First the select() method determines if this particular object is suitable to
form an object in the bl_level. For lakes it is a simple decision if the lake is
large enough. In the select method other objects in the vicinity of the
current object can also be analysed. An island for instance is selected if it is
larger than a certain size and does not have any objects on the island that
shall be members of the bl_level. An example of such an object could be an
important building. This is determined by calling the select methods of the
objects on the island. The select function does not give the complete
answer to the question if an object shall be displayed or not. At a later
stage in the construction process an analysis is made how much space is
available for this particular object in the bl level. If there is not sufficient
space it might be that the object is not instantiated even though the select
function has returned a true.

3. Based on the accuracy requirements of the object class an area is created
around the object that shows where the new object may be located in the
blue level. If there are other objects in the blue level within this area that the
current object can be in conflict with the area is modified until no objects
are located within it, using the merge_geom() method. Which object
classes a particular class can be in conflict with is modelled as
dependencies, which is described in the chapter about dependencies
above. The result is an area where the new object may be located.

4. The simplify method computes the geometry of the new object using the
geometry of the seed object and the area where the new object may be
located.

Roads

The creation of roads is more complex then the general outline above since
each road object only stretches between two nodes in the network structure.
This means that a single road object might stretch between a crossing with a
stream and a crossing with a railway. Harrie (1998) describes the analysis
made at the National Land Survey of Sweden when determining if a dirt road
is to be selected as a member of the green map (1:50 000). A simplified
version of the selection process is to say that a dirt road that is a cul-de-sac is
not created if it is shorter than 500 meters and does not lead to a lake or a
house. This analysis has been implemented in the select function for dirt
roads. A recursive method called Annex() (implemented in the Bl_network
class) is used to collect the road objects that lead between two road crossings
or form a cul-de-sac. This set of road objects is then analysed according to the
above criteria.

If a new road object shall be created in the blue level, the extent of this road
object has to be determined. Linear objects should have a node-link structure
similar to the structure in the green level. However, we do not know if the other
network objects, e.g. a stream, at the endpoints of the current object will be
displayed in the blue level. A collection of objects in the green level that can
form one object in the blue level has to be formed. Another recursive function
calls the select functions of the network objects (e.g. a stream) that connect to
the endpoints of the current object. If these objects shall not be displayed in
the blue level the road object is added to the collection. When the function
ends, we have a collection of road objects that shall form one road object in
the blue level.

An area where the new object may be located is created and modified in a
similar manner to that described above. When this is done it is an advantage
to treat individual links in the network structure as objects. Figure 8 and 9
show how a stream crosses a road and then make a turn and moves along the
road. In Figure 8 the individual road object stretches between two road
crossings and thus runs over the crossing with the stream. In Figure 9 the road
is split at the stream and the individual road object only leads between the
crossing with the stream and the crossing with the road. As has been
described above, the area where the new object may be located should not
have any conflicting objects within it and is modified until all conflicting objects
are outside the area. If an individual road object would stretch over crossings
with other linear objects, e.g. a stream, we would have to accept the stream
object within the area where the new object may be located. This is the case
we have in Figure 8 where we have to accept the part of the stream that
crosses the road within the area, while the part that runs next to the road
should be outside the area. In Figure 9 all linear objects are treated in a node
link structure and this problem does not occur. At the end nodes the buffer is
modified so that the end node is located on the border of the buffer.

Figure 8, A stream crosses a road and then makes a turn and moves along
the road. In this example the road object crosses the stream object. A buffer
around the road shows where the new road object may be located. The
stream is located within the buffer in two places, at the crossing with the
stream and when the stream is close to the road.

Figure 9, The same case as in Figure 8 but now the road object ends at the
crossing with stream.

Finally a new road object is created in the blue level based on the area and
the geometry of the road object in the green level.

Built-up area

When built-up areas are created the seed can be either a built-up area or a
dwelling house in the green level. The surroundings of the seed object are
analysed. If there are any built-up areas or dwelling houses that are located
close enough they are annexed. However, they may not be located on the
other side of a river or a lake. This process continues recursively for the
annexed objects until no more seed objects can be added. The select function
determines if the objects cover an area that is large enough to be represented
with a built-up area in the blue level. If so the new area is created using the
simplify method. In this case there is no need to analyse if there are any
conflicting objects since the only objects that has been created so far that can
have conflicts with this object are other surface objects. This knowledge can
be obtained from the model by looking at the dependencies between different
object classes and the creation sequence. New surface objects that overlap
already existing surface objects are modified by the simplify method until there
is no overlap.

Buildings

There are three kinds of buildings in the green as well as in the blue level:
Dwelling houses, churches, and other buildings. Churches and other houses
are rather uncomplicated and follow the general pattern for creation of new
objects described above. Dwelling houses are more complicated. The seed to
create new dwelling houses in the blue level are dwelling houses in the green
level. The select function determines if an individual dwelling house object is
suitable to be created in the blue level. However, a group of dwelling house
objects in the blue level represents both the individual dwelling house features
and the pattern formed by a group of real world features. Thus we have to
form a collection of dwelling houses that can be analysed to determine which
dwelling house objects that shall represent the pattern of buildings. This
collection is created, by analysing the surroundings of the seed dwelling house
and adding neighbouring dwelling houses to the collection. To be added to the
collection a dwelling house should not be located on the other side of a linear

object such as a road or a river. When the surroundings of the seed house has
been analysed the process continues recursively with the dwelling houses that
have been added to the collection until no more dwelling houses are added.
When we have a group of dwelling houses, the area they can occupy in the
blue level is determined, which is shown by the dotted line in Figure 10. If the
accuracy requirements for dwelling houses are low, there is a risk that they
can be located at the wrong side of a road. This can be avoided by using the
links that are formed between linear objects in different levels. The roads in
Figure 10, for instance, are connected with links between the levels. If, for
instance, a road object is located west of the buildings we can use the links to
determine which road object in the blue level that has been formed from this
road and make sure that the buildings are located west of this road object.
When we know the area within which the buildings should be located, the
simplify method finds conflicts among the dwelling houses due to
symbolisation and selects a subset of the dwelling houses to be represented
in the map.

Figure 10 Left is group of buildings in the green level that form a group of
buildings in the blue level to the right.

Implementation

The model described above has been implemented for three levels. The green
level contains information from the GGD database of the NLS, which is
defined at an approximate scale of 1:10 000. The data set covers an area of
approximately 60 km?. The blue level, which is initially empty, exists in two
different versions defined at different scales. The first version has a resolution
that corresponds to a scale of approximately 1:50 000 and the second one has
a resolution that corresponds to an approximate scale of 1:100 000.

The two different versions of the blue level contain essentially the same
functionality but the parameters of the object classes are tuned differently for
the different scales.

The green level contains the object classes: Lake, river, roads divided into six
separate classes, railroad, road-bridge, rail-bridge, stream, dwelling house,

buildings not used as dwelling houses, and church. The blue level contains the
object classes: Lake, river, roads divided into 5-6 classes, railroad, road
bridge, rail bridge, built-up area, dwelling house, buildings not used as
dwelling house. The features are generated in essentially the manner that has
been described above. A detailed description is given for roads, built-up area,
dwelling houses and buildings not used for dwelling to highlight how the
different parameters are selected.

Roads

Roads are treated as one object class that is divided into 5-6 different types
using different attribute values. Each road type is given a different
symbolisation. This does not comply with what has been said about how
object classes previously. Each object class should only be symbolised in one
way and therefore each road type should be treated as an object class.
However, when roads and railways are created, the topological methods
within LAMPS2 are used to find the objects that meet at the end nodes of the
objects. Since the topological methods in LAMPS2 does not support
inheritance this means that treating the road types as separate object classes
is rather cumbersome. For simplicity | have chosen to treat them as one class.

The creation process for roads has been described above. However since the
blue level now is becoming more populated we can see how conflicts occur
with other road objects as well as with railroad objects. Figure 11 shows an
example where the method works quite well. A road runs along a railway and
then crosses the railway. There are no other objects in the area that can
create conflicts. The road has been moved so that the symbols are not
overlapping each other.

Figure 11 The top map shows the green level and the map below shows the
small scale version of the blue level. The road that runs along the railway has

been moved so that the symbols are not overlapping. The node where the
road crosses the railway has been maintained properly. The roads that are not
shown in the blue level are dirt tracks which are not shown at all at this scale.

Figure 12 shows a similar case where a road has been moved to not have
conflicts with another road. Here we can also see an example where the
simplify method is not sophisticated enough. The symbol size of the first object
infringes on the area where the new object may be located to such an extent
that the second point of the geometry is displaced irregularly.

Figure 12 The top map shows three green level and the map below shows the
small scale version of the blue level. The lower circle illustrates how the road
has been moved to avoid conflicting symbols. The upper circle illustrates a
how the second point of a road link has been moved irregularly due to a
conflict with a symbol of the neighbouring road.

Built up area

In the test area the green level does not contain any built-up area objects and
the large scale version of the blue level is designed in such a manner that no
built-up areas are created. In the small scale version of the blue level however
the building symbols has to have such a size that they can not represent
densely populated areas. A built up area has to be created instead. Since
there are no built up areas in the test data set the method is rather simple.
Dwelling house objects are annexed recursively in the manner that is
described above. The parameters for the annexation has been set so that the
size of a dwelling house has to be larger than 90m? to be selected for the blue
level. The distance between two dwelling houses to be annexed has to be
shorter than 40m. When the annexation is finished we have to have a group of
at least 20 dwelling houses to form a built-up area. The built-up area is formed
by first creating a built-up area around each dwelling house using a buffer
method. When buffers has been created for all selected dwelling houses, all
buffers that are overlapping are merged into one built up area and the small
buffer objects can be deleted. It would also be possible to delete the "islands"
within the built up areas but this has not been implemented. Figure 12 shows
how the built-up areas are shown in the small scale version of the blue level.
Of course this is far from the quality of a topographic map.

Buildings not used for dwelling

This object class will be called house-other. If a house-other in the green level
is suitable to form a house-other in the blue level depends on two
requirements. The house-other has to be larger than a certain area, 600m?in
the small scale version of the blue level and 200 m? in the large scale version.
Furthermore the house other should not be located within a built up area in the
blue level. If this is fulfilled an area where the object may be located in the
blue level is computed using the buffer method. The area is then modified so
that all objects that can have conflicts with the house-other are located outside
the buffer. The geometry of the house-other in the green level is copied and
the method tries to find a position for the geometry that is completely within
the allowed area. However since a building might be surrounded by roads this
could be impossible. The method tries to move the geometry in eight different
directions (North, Northeast, West etc.) and tests if the geometry is inside the
area. If none of the alternatives is accepted the geometry is created at its
original position anyhow. The actual geometry of the house-other is not
modified. Figure 13 shows an example of house-other objects. Some house-
others has been moved while other stays put since they have no conflicts.

Figure 13 The top map shows the green level and the map below shows the
large scale version of the blue level. The house-other objects that are close to
the road have been moved to avoid conflicts.

Dwelling-houses

The creation of dwelling houses complies with what has been described in
above. When the small scale version of the blue level is created the dwelling
houses in the green level that have been used as seeds to create built-up
areas are now marked and can not be used to create dwelling houses.

When we reach the simplification method we have a group of dwelling houses
from the green level that shall be used to form a group of dwelling houses in
the blue level and an area where the dwelling houses may be located. First we
move the dwelling house in a similar manner as has been described for
house-other above to try to get it within the accepted area. Then we check if
there is a conflict with any dwelling house in the blue level that has already
been created. If not, the dwelling house in the blue level is created.

Conclusion

The development of the model has to a large extent followed the steps
suggested by Rumbaugh et al (1991). First a general sketch of the model is
created which is gradually filled with more and more details. So far the model
is not detailed enough to create maps with a reasonable quality. The simplify
method which creates the geometry of a new object, for instance, simplifies
the geometry of the seed object by picking out every second coordinate. The
method also checks that every node in the new geometry is located within the
area where it may be located and, if necessary, moves nodes to be within this
area. Future work on this model is to make the model more detailed and use
more appropriate generalisation algorithms.

The analysis of the green level often relies on recursive methods. The reason
for this is that the green level should not contain any knowledge about how the
blue level is generated. This requirement is necessary in an application where
the blue level retrieves data from a database that belongs to a different
organisation. We can not expect this organisation to modify their database to
suit our application. Furthermore this organisation is most likely supplying data
to several different applications and we can not burden the database with all
kinds of application specific information. This implies that the constructor of an
object class receives a seed object and can analyse its surroundings to find
patterns of objects that are suitable to form new objects in the blue level.
Since the surroundings of the seed object is unfamiliar recursive methods are
very suitable for this analysis.

The main advantage with this approach to modelling seems to be the ability to
structure the vast amounts of requirements and knowledge on how the
generalisation shall be performed into manageable pieces using the tools of
the UML.

References

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling
Language User Guide. Reading, Massachusetts: Addison-Wesley Longman.

Harrie, L. (1998) Generalisation Methods for Propagating Updates between
Cartographic Data Sets. Licentiate Thesis. Lund institute of technology, Lund.

Petzold, I., Plimer, L., and Heber, M. (1999) Label placement for dynamically
generated screen maps. Proceedings of the 19" International Cartographic
Conference, Ottawa, Session 25 B.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorenson W. (1991)
Object oriented modelling and design London: Prentice Hall.

