
Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

1

A Simulated Annealing Algorithm For
Cartographic Map Generalization With Multiple Operators

J. Mark Ware1, Christopher B. Jones2 & Nathan Thomas1

1School of Computing, University of Glamorgan, Pontypridd CF37 1DL, UK
2Department of Computer Science, Cardiff University, Cardiff CF24 3XF, UK
e-mail: jmware@glam.ac.uk

1 Introduction
Displaying map data at scales smaller that its source scale can result in spatial conflict in which
objects become either too small to be seen or too close to each other to be distinguishable. Map
generalization, the process by which such conflict is removed, involves the application of a range of
generalization operators in combination. For example, objects too small to be seen clearly can be
deleted or enlarged; large objects taking up too much map space can be reduced in size; and objects
lying too close to each other can be displaced or amalgamated.

This paper, building upon work presented previously ([1], [2]), describes an algorithm that makes
use of the displacement, deletion, reduction and enlargement of multiple map objects in order to
resolve graphic conflict (Figure 1). It adopts a trial position approach (similar to that used
previously in point feature label placement e.g. [3]), in which each of n discrete polygonal objects is
assigned k candidate trial positions into which it can possibly move; these positions represent the
original, displaced, deleted, reduced and enlarged states of the object. This results in a possible kn

distinct map configurations; the assumption is that some of these configurations will contain less
conflict than the original. Finding the best (or, at least, an acceptable) configuration by means of an
exhaustive search is, however, not practical for realistic values of n and k. Instead the algorithm
makes use of the simulated annealing search technique [4], which has been shown to be successful
in solving large optimization problems quickly e.g. [5]. For our purposes, simulated annealing
reduces the number of map configurations needing to be generated and evaluated.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

2

Figure 1. Reducing scale causes conflict, which can be resolved by a combination of object displacement, reduction,
enlargement and deletion.

Figure 2. Displacement vector template for generating trial positions. tp1 = trial position 1. In this example, there are 28
displaced state trial positions.

Displace, reduce, enlarge and
delete objects

Reduce
scale

tp1

d

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

3

2 Conflict Reduction by Object Displacement
In previous work the authors consider a map display D made up of fixed linear objects F and n
modifiable detached polygonal objects M. Each modifiable object mi∈M has k possible states,
providing a total of kn possible configurations of D.

Object States
At any given time a particular object mi exists in one of its k states (we will also refer to these states
as trial positions). An object's initial map position is designated as being trial position 1. Additional
trial positions arise as a result of object displacement only. (Additional generalization operators are
considered in section 5). It is assumed that during the course of generalization, each object mi can be
displaced up to some maximum distance d from its original position (i.e. there is a continuous space
that extends from mi by a distance d into which it is permissible for mi to move). The displacement
trial positions associated with mi represent a discrete approximation to this continuous space. Each
object mi has k displacement trial positions, which are distributed evenly about the object (Figure 2).

Evaluation of Map Display
For a particular configuration Dj, each object mi has an associated cost. The cost is determined by
the extent to which mi is in conflict. Two categories of spatial conflict are considered:

• Type-1. Conflict between a pair of polygonal objects (i.e. mi and mj lie too close to each
other to be distinguishable). This conflict occurs when the minimum separating distance (in
viewing coordinates) between mi and mj is less than some predefined threshold dmin1. An
occurrence of this type of conflict carries a cost c1;

• Type-2. Conflict between a polygonal object and a linear object (i.e. mi and fj∈F lie too close
to each other to be distinguishable). This conflict occurs when the minimum separating
distance (in viewing coordinates) between mi and fj is less than some predefined threshold
dmin2. An occurrence of this type of conflict carries a cost c2.

The total cost C(Dj) associated with a realization Dj is found by summing the costs associated with
each object mi∈M. Our goal is to find a minimum cost configuration Dmin such that

C(Dmin) = MIN(C(Dj), j=1,2…kn).

The set of all configurations is referred to as the search space. If the search space is small enough
then Dmin can be found by generating and evaluating each configuration Dj (j=1,2…kn) in turn.
However, this is not practical for realistic values of n and k. For example, a relatively simple display
consisting of 10 modifiable object, each with 8 trial positions, gives rise to approximately
1,000,000,000 configurations. Results reported later in this paper suggest it would take
approximately 10 days to process this many configurations (generating and evaluating a single
configuration takes approximately 0.00005s).

A Simulated Annealing Solution
A well-established approach to solving large optimization problems of the kind described is to
adopt an iterative improvement algorithm. The concept of iterative improvement can be illustrated
by considering the search space (i.e. in our case, all map configurations) to be laid out on the
surface of a landscape. The elevation at any point on the landscape represents the cost for the
particular configuration associated with that point. An iterative improvement algorithm will move
around the landscape in an attempt to find the lowest troughs, which correspond to low cost

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

4

configurations [7]. Two major classes of iterative improvement algorithms are Gradient Descent
and Simulated Annealing.

function GradientDescent
input: Dinitial
Dcurrent←Dinitial
do

Dnew←LowestCostSuccessor(Dcurrent)
if C(Dnew)=≥C(Dcurrent) then Return(Dcurrent)
Dcurrent←Dnew

end
Return(Dcurrent)

Algorithm 1. Gradient Descent.

function SimulatedAnnealing
input: Dinitial, Schedule, Stop_Conditions
Dcurrent←Dinitial
T←initialT(Schedule)
while NotMet(StopConditions)

Dnew←RandomSuccessor(Dcurrent)
∆E←C(Dcurrent)-C(Dnew)
if ∆E >0 then Dcurrent←Dnew
else

P = e
-∆E/ T

R=Random(0,1)
if (R<P) then Dcurrent←Dnew

end
T←UpdateT(Schedule)

end
Return(Dcurrent)

Algorithm 2. Simulated Annealing.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

5

Algorithm 1 describes a simple gradient descent implementation. The algorithm accepts an initial
map configuration Dinitial (i.e. each object in trial position 1), which is immediately designated as
being the current solution Dcurrent. Next the lowest cost successor Dnew to Dcurrent is found. A
particular successor to Dcurrent is found by moving a single object mi to an alternative trial position;
the lowest cost successor can be found by generating and evaluating all possible successors (of
which there are kn-1). If Dnew represents an improvement on Dcurrent, then Dnew becomes Dcurrent and
the next lowest cost successor is generated. This process is repeated until a Dnew is generated that
offers no improvement; at this stage the algorithm terminates, with Dcurrent being returned as the
solution. The algorithm is quite straightforward, but is not guaranteed to find an optimal solution
since it is possible to arrive at a non-optimal current state from which no better state can be reached.
This occurs when the search descends into a local minimum, from which any single displacement
generates a worse state. To use the landscape analogy once more, a local minimum can be thought
of as a trough in the landscape that happens to be higher than the lowest point on the landscape.
Several ways of trying to deal with the problem of local minima are available (e.g. random-restart,
backtracking and multiple-moves). However, the exponential nature of most realistic search spaces
make such remedies impractical.

Searches based on simulated annealing (Algorithm 2) attempt to overcome the problem of getting
caught in local minima. They achieve this by sometimes allowing non-improving configurations to
be accepted. As with gradient descent, simulated annealing always accepts Dnew if it offers a better
solution than Dcurrent. However, in cases where Dnew provides no improvement, simulated annealing
will accept the new configuration with some probability P (P<1). Like gradient descent, the
algorithm begins by accepting an initial map configuration Dinitial (i.e. each object in trial position
1); this is immediately designated as being the current solution Dcurrent. Next a random successor
Dnew is generated by moving a randomly chosen object mi to a randomly chosen trial positions kj. If
the displacement results in a display configuration with a lower cost (C(Dnew) < C(Dcurrent)), then the
object remains in the chosen trial position (Dcurrent←Dnew). If, however, the new display has a higher
or equal cost (i.e. C(Dnew) ≥ C(Dcurrent)), then the object is either returned to its previous position or
remains in its new position, depending on probability P. The process of attempting a random object
displacement continues until stop conditions are met (e.g. a solution which meets a target cost is
found or a pre-defined maximum number of iterations have taken place or a pre-defined maximum
amount of time has elapsed).

At each iteration the probability P is dependant on two variables, ∆E (the change in conflict,
measured by the difference in cost between the new and current states) and T (the current
temperature), and is defined as:

P = e
-∆E/ T.

T is assigned a relatively high initial value; its value is decreased in stages throughout the running of
the algorithm. At high temperatures poor displacements (large negative ∆E) will often be accepted.
At low temperatures poor displacements will tend to be rejected (although displacements resulting
in small negative ∆E might still sometimes be accepted). The acceptance of some poor
displacements is permitted so as to allow escape from locally optimal solutions. In practice, the
probability P is usually tested against a random number R (0 ≤ R ≤ 1). A value of R < P results in
the new state being accepted. For example, if P = 1/3, then we would expect, on average, for every
third worse new state to be accepted. The initial value of T and the rate by which it decreases is
governed by what is called the annealing schedule. Generally, the higher the initial temperature and
the slower the rate of change, the better the result (in cost reduction terms); however, the processing

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

6

overheads associated with the algorithm will increase as the rate of change in T becomes more
gradual.

Finding a minimum cost configuration Dmin by simulated annealing is statistically guaranteed,
provided that the temperature reductions are small enough, and that for each temperature the
number of configurations tested is large enough [3]. However, most practical applications settle for
near optimal solutions, and make corresponding compromises in the annealing schedule; a suitable
schedule is usually decided upon after some preliminary experimentation.

Cost Function
The viability of any iterative improvement algorithm depends heavily on it having an efficient cost
function, the purpose of which is to determine for any given element of the search space (i.e. any
map realization) a value that represents the relative quality of that element. The cost function used
here, C, is called repeatedly and works by calculating and summing the costs associated with
objects mi∈M. When invoked initially, C must calculate the cost associated with every object mi∈M.
A record of these costs is maintained for future reference, meaning that, in any further call, C has to
consider only objects with costs affected by the most recent displacement. Calculating the cost
associated with a polygonal object mi involves identifying all other polygonal objects lying within a
distance dmin1 and all linear objects lying within a distance dmin2. Identifying these conflicting
objects quickly requires the use of a spatial index of some kind. The current implementation makes
use a triangle-based data structure called the SDS, together with an associated search procedure
(extensive details of both are given in [1],[8] and [9]).

Initial Results
Initial experiments, reported in [1], demonstrate that both gradient descent and simulated annealing
approaches are successful in reducing conflict while limiting the number of realizations examined.
When compared against each other, the simulated annealing approach is clearly superior with
regard to the degree of conflict reduction achieved. It is for this reason that the simulated annealing
algorithm was chosen as the focus for further research, as discussed in the remainder of this paper.

The experiments reported in [1] make use of IGN-France BDTopo data (1:25,000) consisting of 321
polygonal objects contained within 16 regions. The minimum separating distance tolerances used
assume a visual perception threshold of 0.15mm and a map scale reduction to 1:50,000. The
tolerance values (dmin1 and dmin2), displacement value (d), initial conflict values and cost values used
are shown in Table 1. In the experiments, Type-1 conflict is deemed less serious than Type-2
conflict; the cost values c1 and c2 are set so as to reflect this fact. The experiments made use of a C
implementation of the simulated annealing algorithm (compiled with –O3 option) running under
UNIX on a Sun Enterprise 2 model 2200 (2x200MHz Ultrasparc). The annealing schedule
parameters were set as follows (see [1] for details): Initial temperature V=3.0; Temperature
reduction value X=0.1; Cooling rate values W=100 and Y=30; and Maximum number of temperature
stages Z=50 (in practice the maximum number of temperature stages is never reached). As can be
seen from the results given in Table 1 and illustrated in Figure 3, the simulated annealing approach
reduces the amount of spatial conflict by up to 90%. It achieves this while at the same time limiting
the number of realizations having to be generated and evaluated (approximately 300,000 out of a
possible 29321).

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

7

dmin1 dmin2 d c1 c2 Type-1 Type-2Tolerance
values

and initial
conflict

7.5 7.5 7.5 1 10 236 36

Results average
Type-1

s.d.
Type-1

average
Type-2

s.d.
Type-2

average
number
of tests

s.d.
number of

tests

average
execution

time

s.d.
execution

time
Original 26.6 2.9 0.0 0.0 342302.2 18613.1 39.67 2.17
800MHz 25.4 2.7 0.0 0.0 328282.5 17439.3 13.46 0.67

Table 1. Initial and updated results (s.d. = standard deviation).

Updated Results
For the sake of valid comparison with results reported later in this paper, the same C
implementation (again compiled with –O3 option) has now been run under LINUX on an 800MHz
Pentium III machine (128Mb RAM). The new results are shown in Table 1. The only significant
change is in execution time, which has been reduced from 39.67s to 13.46s; this reduction is a direct
result of using a faster machine. The number of realizations tested and final conflict remain more or
less the same, as is expected; the small differences are due to the random nature of simulated
annealing.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

8

Figure 3. BDTopo data before (top) and after (bottom) application of simulated annealing algorithm Objects shown in
red are involved in spatial conflict of some kind.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

9

3 Execution Time Improvement
A shortcoming of the simulated annealing algorithm as it stands is that execution times remain too
slow for it to be considered for use in applications requiring on-the-fly generalization (e.g. web
mapping, in-car navigation and location based services). This section describes two techniques for
reducing execution times. Both techniques achieve improvement by reducing the number of
realizations having to be generated and tested.

Data Partitioning
Firstly, we suggest that execution can be speeded up by dividing the map into autonomous regions
(i.e. such that there is no possibility ever of objects in a particular region coming into conflict with
objects in any other region). The reasoning here is that by dividing the data it is possible to produce
a separate annealing schedule for each region, each schedule being set to meet the specific demands
of its associated region. One problem to be solved here is finding a technique for dividing up the
map. In some instances it may be possible to make use of naturally occurring regions, such as those
formed by a road network or administrative boundaries. Other situations will require analysis of the
distribution of objects in order to find groupings of objects that sustain no influence from objects
external to their group.

Figure 4. Division of BDTopo data into 16 autonomous regions.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

10

The current work makes use of a road network to divide data. Using this approach, the BDTopo is
divided into 16 regions (Figure 4). The simulated annealing algorithm can now be applied to
regions individually. Through experimentation, it is possible to produce an appropriate annealing
schedule for each region (Table 2). Note, that the initial temperature V, the temperature reduction
value X and the maximum number of temperature stages Z, are the same in each case, and are the
same as used previously. We found that the number of realizations tested could be controlled
adequately by changing just the cooling rate values W and Y. The results obtained using these
schedules are given in Table 2. It can be seen that, on average, the total number of realizations
tested has been reduced to 78706.9. The average execution time sees a corresponding fall to 3.2s, a
reduction of just over 75% . The conflict remaining in the data has not changed significantly.

initial results (averages)region
Type-1 Type-2

W Y
Type-1 Type-2 number

of tests
execution

time
1 2 1 10 3 0.0 0.0 83.6 0.003
2 4 0 30 10 0.0 0.0 22.4 0.001
3 16 1 30 10 2.0 0.0 5869.5 0.247
4 6 7 30 10 0.0 0.0 6703.5 0.268
5 8 1 30 10 2.0 0.0 3201.9 0.128
6 12 2 30 10 0.0 0.0 5017.2 0.221
7 24 0 30 10 2.0 0.0 6923.9 0.284
8 18 4 10 3 0.0 0.0 2201.2 0.088
9 10 7 30 10 2.0 0.0 4490.3 0.186

10 6 0 30 10 0.0 0.0 3516.1 0.148
11 12 2 30 10 1.6 0.0 5666.7 0.224
12 0 1 10 3 0.0 0.0 14.2 0.001
13 6 1 30 10 2.0 0.0 2435.6 0.097
14 70 1 12 4 6.9 0.0 7037.3 0.303
15 6 2 30 10 1.8 0.0 2425.8 0.102
16 36 6 12 4 7.2 0.0 23097.7 0.935

total 236 36 27.5 0.0 78706.9 3.235

Table 2. Data partitioning results. . Initial temperature, temperature reduction value and maximum number of
temperature stages are the same for each region. The values used are V=3.0, X=0.1 and Z=50.

Note again that in this approach, each region has its own annealing schedule, each schedule tailored
to meet the requirements of its associated region. At present, the schedules are arrived at manually
via experimentation. A difficulty arises when the procedure is applied to a different data set; the
problem is that new annealing schedules have to be produced manually for each of the regions
present in the data. The procedure cannot therefore be regarded as fully automated. In response to
this, future research will consider methods for automatic generation of annealing parameters. One
possible way forward is to use Artificial Neural Networks to generate suitable schedules based on
data characteristics, such as number of objects, object density and amount of conflict. Initial
inspection of results obtained to date suggest some correlation between these characteristics and the
annealing parameters chosen.

Two-Stage Approach
Some authors suggest that optimization can be made more efficient by adopting a two-stage
approach [6]. In two-stage simulated annealing a faster heuristic algorithm is used to replace the
simulated annealing actions occurring at higher temperatures. This is followed by a conventional
simulated annealing approach initiated at lower temperatures in an attempt to improve on the initial

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

11

solution. The approach adopted in our implementation differs slightly in that the faster heuristic
algorithm is replaced by simulated annealing in conjunction with an annealing schedule that
involves an initial high temperature followed by rapid cooling. The second stage again makes use of
simulated annealing, this time with a much lower initial temperature followed by much slower
cooling. The annealing parameters used are given in Table 3. Experimental results (Table 4) show
that execution times are reduced by approximately 75% when adopting the two-stage approach.

stage V X W Y Z
1 3.3 0.4 10 10 50
2 0.2 0.1 30 10 50

Table 3. Parameters used in two-stage annealing.

Overall Improvement
The two modifications described have been combined in a single implementation (i.e. the two-stage
procedure is applied to each of the 16 regions in turn). Experimental results, shown in Table 4,
reveal an overall improvement of approximately 88%, with average execution times falling from
13.46s to 1.55s.

results average
Type-1

s.d.
Type-1

average
Type-2

s.d.
Type-2

average
number
of tests

s.d.
number
of tests

average
execution

time

s.d.
execution

time
original 26.6 2.9 0.0 0.0 342302.2 18613.1 39.67 2.17
800MHz 25.4 2.7 0.0 0.0 328282.5 17439.3 13.46 0.67

partitione
d

27.5 0.0 78706.9 3.235

two-stage 27.4 3.0 0.0 0.0 74154.5 3659.4 3.12 0.1
combined 26.5 2.8 0.0 0.0 37283.8 1864.7 1.55 0.08

Table 4. Two-stage approach results and combined results (original, 800MHz and partitioned results also shown).

4 Displacement Cost
Objects are displaced during the course of annealing, the overall aim being to reduce spatial
conflict. However, many of the displacements prove unnecessary (i.e. they do not lead ultimately to
a reduction in spatial conflict) and occur only as a consequence of the algorithms occasional
acceptance of neutral and negative displacement. The result is a final display containing objects
displaced from their original location without benefit. In order to minimize displacement of this
type, an object displacement cost is introduced. If an object exists in a displaced state then a cost is
incurred:

• Displacing an object carries a cost δc3, where δ=represents the magnitude of displacement.

The costs associated with spatial conflict and object modification are combined to give the overall
cost associated with an object. For example, consider an object mi that currently exists in a
displaced state (cost = δc3) and lies in conflict with two other polygonal objects (cost = 2c1) and one
linear object (cost = c2). Its associated cost would equal (2c1 + c2 + δc3). Assigning appropriate
values to c1, c2, and c3 (i.e. 0<c3<c2,c3) creates an incentive for displaced objects to return, during
the course of annealing, as near to their original location as is possible without a resulting increase

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

12

in conflict. Displays produced with and without consideration to displacement cost are shown in
Figure 5.

Figure 5. Example of the effect of including displacement cost. Top - original data. Middle - result obtained without
consideration to displacement cost (original object locations shown in background). Bottom - result obtained when

displacement cost is taken into account; unnecessary displacement has been reduced.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

13

5 Additional Operators
A further shortcoming of the initial algorithm is that it does not guarantee the removal of all spatial
conflict. For example, the best result obtained during experiments was a final Type-1 conflict cost
of 22. It is clear that displacement on its own is not sufficient to resolve all conflict and additional
generalization operators are required. We consider three additional operators:

• reduction;
• enlargement;
• deletion.

Object States
Again we consider a map display D made up of fixed linear objects F and n modifiable detached
polygonal objects M. Each modifiable object mi∈M has k possible states providing us with kn

possible configurations of D. At any given time a particular object mi exists in one of its k possible
states; its (k-1) modified states arise as a result of either displacing the object, reducing the size of
the object, increasing the size of the object or deleting the object. In the current implementation, the
possible object states are:

• Unmodified State. Each object mi has a single unmodified state;
• Deleted State. An object mi has a single deleted state trial position; this trial position

represents the situation where the object has been removed from the display.
• Displaced States. Each object mi has q displaced state trial positions, which are distributed

evenly about the object.
• Reduced States. Each object mi has q+1 reduced state trial positions; these trial positions

result from applying a scaling factor sr (0<sr<1) to the unmodified state and displaced states
of mi.

• Enlarged States. Each object mi has q+1 enlarged state trial position; these trial positions
result from applying a scaling factor se (se=≥=1) to the unmodified state and displaced states
of mi.

The object reduction value sr is fixed for all objects (e.g. 0.75). The object enlargement value se
varies for each object and is dependant on object display area. For an object with display area less
than a minimum area tolerance amin, se is set so as to increase object display area to amin. Objects
with display area greater than or equal to amin have se set to 1 (i.e. its application has no effect).

Evaluation of Map Display
For a particular configuration Dj, an object mi has an associated cost. This cost is a measure of both
the spatial conflict in which the object is involved and the extent to which the object is modified.

Three categories of spatial conflict are considered:

• Type-1. Conflict between a pair of polygonal objects (i.e. mi and mj lie too close to each
other to be distinguishable). This conflict occurs when the minimum separating distance (in
viewing coordinates) between mi and mj is less than some predefined threshold dmin1. An
occurrence of this type of conflict carries a cost c1;

• Type-2. Conflict between a polygonal object and a linear object (i.e. mi and fj∈F lie too close
to each other to be distinguishable). This conflict occurs when the minimum separating

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

14

distance (in viewing coordinates) between mi and fj is less than some predefined threshold
dmin2. An occurrence of this type of conflict carries a cost c2.

• Type-3. Conflict involving a single object (i.e. mi is too small for it to be seen clearly). This
type of conflict occurs when area of mi (in viewing coordinates) is less than amin. An
occurrence of this type of conflict carries a cost c3;

If an object exists in a modified state then a cost is incurred:

• Displacing an object carries a cost δc4, where δ= represents the magnitude of displacement;
• Reducing an object carries a cost c5, where c5 is proportional to the scale of reduction;
• Enlarging an object carries a cost c6, where c6 is proportional to the scale of enlargement;
• Deleting an object carries a cost c7.

The costs associated with spatial conflict and object modification are combined to give the overall
cost associated with an object. For example, consider an object mi that has been reduced in size and
lies in conflict with two other polygonal objects and one linear object. Its associated cost would
equal (2c1 + c2 + c5). As before, the total cost C(Dj) associated with a realization Dj is found by
summing the costs associated with each object mi; our goal is to find a minimum cost configuration
Dmin.

Implementation and Testing
In implementation terms, introducing reduction, enlargement and deletion capabilities is
straightforward; these additional modified states of an object are treated as additional trial positions
for that object. Object reduction and object enlargement are achieved by applying a suitable scaling
factor (sr and se) to the object, while deletion is accommodated by means of a simple Boolean flag
(i.e. an object is either deleted or not deleted). The cost function C is updated to take account of the
additional costs.

Cost Setting
It is important to make sure that conflict costs (c1, c2 and c3) and object modification costs (c4, c5, c6
and c7) are set appropriately; it is these costs that govern the likelihood of any given object/trial
position pairing being accepted should they be chosen during the annealing process. As such, the
cost values must be set so as to accommodate any orders of precedence that might exist between the
various operators and conflict types. For example, consider an application that simply requires the
removal of all spatial conflict (i.e. reducing spatial conflict is the stated primary goal, and
minimizing object modification is an implied secondary goal). This might be achieved by assigning
a relatively high value to each of the conflict costs (e.g. c1=100, c2=100 and c3=100) and a relatively
low value to each of the object modification costs (e.g. c4= 5, c5=5, c6=5 and c7=5). It could be the
case, however, that the modification operators have an order of precedence in which object
displacement is preferred to object reduction, which in turn is preferred to object deletion; the
relevant cost value are changed accordingly (c4= 5, c5=10 and c7=15).

Displacement and Deletion
Deletion was the first of the additional operators to be tested. The main thing to note here is that
care must be taken when setting the deletion cost value c7. If it is set too high then, in some
situations, not enough deletion takes place, and, as a consequence, spatial conflict is not always
removed (i.e. the cost of deleting is greater than the cost associated with the spatial conflict). On the
other hand, if c7 is set too low, then too many deletions tend to occur (i.e. objects are prematurely

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

15

deleted in situations where displacement could have succeeded). Finding values that always result
in necessary deletions only is not always possible. In our experiments, we have used c7 values that
always result in removal of all spatial conflict (sometimes leading to over-use of deletion). An
example of each of the deletion cost setting scenarios is given in Figure 6.

Reduction and Enlargement
Object reduction and enlargement operators are now introduced. Again note that care must be taken
when setting object modification costs and regard must be given to any operator precedence that
may exist. Figure 7 shows a display produced with object displacement preferred to object
reduction, and object reduction preferred to object deletion

Cost Weighting
When generalizing a map it is important to consider the relative importance of objects; important
objects should be less prone to modification than unimportant objects. Consider a tourist map in
which an object mm, representing a museum, lies in conflict with an object mh, representing an
ordinary house. In this context, mm can be regarded as being more important than mh , and hence
should be less susceptible to generalization. In this situation there are a number of alternative
conflict resolution strategies that could be employed. For example, conflict resolution could initially
involve displacement and reduction of mh only; if this failed, mh could be deleted. An alternative
strategy might again involve the initial displacement and reduction of mh only. If this failed then the
next step would be displace and reduce mh and mm in combination; continued failure at this stage
would result in the deletion of mh. Relative object importance is incorporated into the simulated
annealing procedure by assigning a cost weighting wi to each object mi. Whenever an object mi and
trial position kj pairing are chosen during the annealing process, the cost associated with kj is
multiplied by wi to give a modified cost. A particular cost weighting value wi will be based on one
or more of the attributes of mi. In our experiments to date, and in the absence of any other measure
of importance, an object's importance, and hence its cost weighting value, is assumed to be
proportional to object area (with large objects deemed more important than small objects). Figure 8
(top) shows output produced with no account taken of object importance. The large object to the left
has been deleted in order to resolve conflict. If we consider large objects to be more important than
small, then it would make more sense to have deleted the smaller object to the right. This can be
achieved by making use of appropriate cost weightings, as shown in Figure 8 (bottom).

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

16

Figure 6. Application of deletion operator. Deleted objects shown in green. Top - deletion cost set too high, not all
spatial conflict removed. Middle - deletion cost set too low, over-deletion. Bottom - better deletion cost, some

unnecessary deletion.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

17

Figure 7. Full and zoomed-in version of display obtained using object displacement, reduction, enlargement and
deletion. Reduced objects shown in blue (no object enlargement required).

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

18

Figure 8. Results obtained with (bottom) and without (top) cost weighting.

Draft Paper - ICA Map Generalization Workshop, Beijing, August 2001

19

Group Application
In the current implementation, the modification operators are applied to a single object only at any
given time. Other strategies could be accommodated using the simulated annealing approach. For
example, there is no reason why deletion could not be applied to groups of objects on-mass, where
groupings are determined by some attribute such as object class or object area. The on-mass
deletion could be treated as just another trial position for the objects in question (i.e. the objects
could be reintroduced as a group at some later stage of the annealing process), or could be applied
as a more permanent culling of objects at pertinent stages of the generalization process (e.g. at the
start following an initial assessment of the problem or at certain stages during the generalization
process when it becomes apparent that the other operators will not succeed in resolving conflict).
Similarly an associated collection of objects, perhaps representing a row of buildings, could be
displaced (or reduced or enlarged) as a group, so as to maintain, for example, feature alignment.

Acknowledgement
Nathan Thomas is funded by EPSRC CASE Studentship 00802722, which is carried out in
collaboration with the Ordnance Survey. The authors express thanks to the Institut Géographique
National for permission to use their data in parts of the work presented.

References
[1] Ware, J.M. and Jones, C.B., 1998, “Conflict Reduction in Map Generalization Using Iterative
Improvement”, Geoinformatica, 2(4): 383-407.
[2] Ware, J.M., Jones, C.B. and Lonergan, M.E., 2000, "Map generalization by Iterative
Improvement", Presented at First International Conference on Geographic Information Science
(GIScience 2000).
[3] Zoraster, S., 1997, “Practical results using simulated annealing for point feature label
placement”, Cartography and Geographical Information Systems, 24(4): 228-238.
[4] Kirkpatrick, S., Gelath, C.D. and Vecchi, M.P., 1983, “Optimization by simulated annealing”,
Science, 220:671-680.
[5] Emden-Weinert, T. and Proksch, M., 1999, “Best practice simulated annealing for the airline
crew scheduling problem”, Journal of Heuristics, 5(4): 403-418.
[6] Varanelli, J. and Cohoon, J.P., 1993, “Two-Stage Simulated Annealing”, ACM Physical Design
Workshop, Lake Arrowhead, CA, April 1993.
[7] Russell, S. and Norvig, P., 1995, Artificial Intelligence : A Modern Approach (Prentice-Hall),
1995.
[8] Jones, C.B. and Ware, J.M., 1998, “Proximity relations with triangulated spatial models”, The
Computer Journal, Volume 41, Number 2, pages 71-83.
[9] Jones, C.B., Ware, J.M. and Eynon. C.D., 1999, “Triangulated Spatial Models and
Neighbourhood Search: An Experimental Comparison with Quadtrees”, The Visual Computer,
Volume 15, Number 5, pages 235-248.

	References

