Semantics

Group 2
Scale and semantics

- One view: larger scale, more important the semantics; smaller scale, more dominant the geometric
- Another view: opposite, although less dramatic change in geometry,
Operators and semantics

• Some generalization operators contain semantic transformation already
• but lack of quantitative measures
Feature and semantics

• Semantic information is imbedded in each feature, class and/or objects
Purpose and generalization

• Two types of generalization
 – scale-driven
 – purpose-driven

• Two types of purpose
 – general purpose => more difficult
 – Special purpose => relatively easier
Rules and semantics

• Explicit rules required
• For thematic maps, from the semantics of the theme
• For topographic maps, some have been tried
 – Functional, procedural, structural
 – Attributes may be used only if relevant
Semantics of Generalisation

- Core functions as general platform
- Specific functions for specialized maps
- Rules formed from specialized discipline
- Specialized generalization system to be built by customization
Generalization of Generalization

- Should be or can we accept conflicts, as conflicts existed in reality?
- Can we leave the consideration of exaggeration and importance at the customization stage?