
 1

"A Methodology for the Assessment of Generalization Quality" 
 

Andriani Skopeliti Lysandros Tsoulos 
  

 
Cartography Laboratory, Faculty of Rural and Surveying Engineering 

National Technical University of Athens 
H. Polytechniou 9, 157 80 Zographou Campus, Athens, Greece 

Tel:  +30 +1+772-2730 Fax: +30+1+772-2734 
email: askop@central.ntua.gr, lysandro@central.ntua.gr  

 
Keywords: generalization quality assessment, positional accuracy, line shape description 
Abstract 

Generalization quality assessment is a major issue in contemporary cartography. Besides the evaluation of 
generalization results, it supports the research for the automation of generalization. In this paper, two methods, 
based on structure and shape recognition, are elaborated: the parametric description of line shape and the 
partitioning of linear features into homogeneous segments. A number of quantitative measures for the 
assessment of line shape change due to generalization are identified. These measures provide an “a posteriori” 
evaluation of generalization alternatives, which result from the application of different generalization operators 
(i.e. simplification, smoothing), algorithms and tolerance values, onto a number of linear features of varying 
degree of complexity. In combination with existing quantitative measures for the horizontal position error, these 
measures constitute an efficient approach for the positional accuracy assessment at the individual object level. 
Specific tools, like graphs and tables, are proposed for the study of the positional accuracy aspect of any 
generalization schema. The application of this methodology will  lead to the formulation of criteria, which can 
be used for the selection of the most suitable generalization solution and subsequently to knowledge acquisition 
and the development of a knowlwdge base to support automated map generalization. 

1. Cartographic generalization and quality 
Cartographic features’ quality is influenced by a number of transformations throughout the map 
production process such as: generalization, projection change etc. Generalization may have 
unpredictable effects on the metric, topological and semantic aspect of a map. Each generalization 
operation influences certain elements of spatial data quality such as: positional accuracy, attribute 
accuracy, consistency and completeness (Muller, 1991). For example, displacement leads to lower 
accuracy, completeness is affected by selection and merging operations, some attributes may be lost 
through reclassification, consistency may be affected by uneven applications of spatial or temporal 
abstractions (Muller et al. 1995).  

The assessment of spatial data quality is a major issue in contemporary cartography, influencing the 
decisions concerning the data fitness for use. Users want to minimize, control and quantify the effects 
of generalization on the data. Generalization quality assessment is also important for the evaluation of 
the results of automatic generalization and knowledge acquisition. Thus, the development of criteria, 
measures and evaluation methods is considered indispensable for generalization.  

Measures for the evaluation of generalization alternatives can be characterized as quantitative and 
qualitative (Weibel, 1995; Ehrliholzer, 1995). Quantitative measures are further distinguished to 
global, geometrical, topological and software-related measures. Qualitative measures are based on the 
evaluation of expert’s statements. Both quantitative and qualitative criteria should be developed to 
allow for the comparison of different generalization alternatives (among themselves and/or against a 
solution that is considered optimal), and eventually make it possible to judge and rank different 
solutions consistently (Weibel, 1996 p.66). According to Lagrange (1997) generalization quality 
assessment should be carried out for individual objects, groups of objects and entire map products in 
terms of their geometry, topology, semantics and aesthetics. 

Criteria and methods (qualitative and quantitative) for the quality assessment of generalization 
methods, are largely missing (Weibel 1995); and thus generalization quality assessment remains an 
open research issue. 
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2. Positional accuracy of linear features 
The majority of map features is either represented as lines (e.g. road centerlines, streams) or form 
polygons which are bounded by lines (e.g. administrative regions, soil polygons, forest stands) 
(Weibel, 1996). Positional accuracy is one of the main elements of linear features quality and it can be 
further analyzed to horizontal position accuracy and shape fidelity (European Committee for 
Standardization, 1996). Horizontal position accuracy (i.e. the ability to access the correct position) 
differs from shape accuracy (the ability to recognize the “true” shape of the object) (Muller et al., 
1995). A number of generalization operators like simplification and smoothing influence positional 
accuracy. 

Usually the results of a generalization operator are evaluated visually, mostly based on aesthetic 
criteria and less on quality assessment. However, generalization of digital data is an analytic procedure 
and cohesive criteria must be established for its evaluation. The evaluation of the positional accuracy 
aspect of cartographic generalization calls for the quantitative description of horizontal position and 
shape along with the development of measures for the assessment of their change. 

 Coordinates with respect to a reference system describe the horizontal position of spatial entities. 
Several measures have been identified (McMaster (1987, 1989), Jenks (1989) and Mustiere (1995)), 
for the horizontal position deviation between the original and the generalized line. A number of 
researchers carried out a systematic study on generalization results utilizing these measures (McMaster 
(1987, 1989); Jenks (1989); Joao (1995, 1998); Mustiere (1995)). On the same time, the description of 
the shape of linear features is an open research issue. If the shape of linear features is described in an 
objective way, its change due to cartographic generalization can be assessed. In the past a number of 
approaches for line shape description were suggested. Ruas and Lagrange (1995) classify techniques 
which rely on: directional changes such as Freeman chain encoding (Freeman, 1978), fractal analysis 
(Mandelbrot, 1967; Buttenfield, 1985), global characterizations (Jasinski, 1990; McMaster, 1987; 
Buttenfield, 1991; Bernhardt, 1992), detection of characteristic points (Thapa, 1989; Plazanet et al., 
1995), techniques from artificial vision (Mokhtarian and Mackworth, 1992), description by means of 
mathematical formulation (Affholder, 1993) and frequency analysis, such as Fourrier (Fritsch and 
Lagrange, 1995). With regard to the preservation of shape during generalization, certain measures, 
which evaluate the degradation of the total sinuosity due to generalization have been identified by 
McMaster (1986), Jasinski (1990) and Buttenfield (1991). Plazanet (1996) identified evaluation 
measures especially for man-made features. The characterization and segmentation of cartographic 
lines is an important step towards this direction and falls into the field of Structure recognition (Weibel 
1997).  

According to Weibel (1997), structure recognition - that is the analysis of shape of map features - 
allows for the identification of the proper generalization approach and constitutes the basis for the 
selection, sequencing and parameterization of an appropriate set of generalization operators for a given 
line. However, all aspects of cartographic knowledge contribute to the generalization automation. 
According to Muller (1991) and Armstrong (1991), cartographic knowledge takes three different 
forms: geometrical, structural and procedural. Using linear entities described by their geometry 
(knowledge), structural knowledge is acquired through shape measurement techniques. Structural 
knowledge is combined with procedural knowledge, when cartographic generalization examples are 
retrieved from analog maps or are provided by expert cartographers. 

In the following paragraphs, two methods for structure and shape recognition are elaborated: the 
parametric description of line shape and the partitioning of linear features into homogeneous 
segments. Based on the first method, special measures for the assessment of shape change due to 
generalization are identified. Utilizing these measures, which control shape fidelity along with the 
existing ones for horizontal position change, a complete approach to linear entities positional accuracy 
assessment can be formed (Figure 1).  
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Figure 1. Positional accuracy assessment of linear features, utilizing structure recognition. 

3. A methodology for structure and shape recognition  
The methodology developed by the authors (Skopeliti and Tsoulos, 1999), aims at the parametric 
description of the shape of linear features. The fundamental concept in this approach, is the use of 
measures which are calculated at different resolution levels. This concept has been adopted by a 
considerable number of researchers, who followed different approaches for line shape description 
(Buttenfield, 1991; Bernhardt, 1992; Mokhtarian and Mackworth, 1992; Mandelbrot, 1967). In 
particular for angular measures computations, like in Carstensen (1990, p. 213), Thapa (1989) and 
(Plazanet 1996), lines are pre-processed in order to acquire a common resolution taking into account 
the source scale. In this way, angularity calculations are comparable with no bias due to the vertices 
spacing.  

According to the proposed methodology, the shape of linear features is described by three parameters: 
the average magnitude angularity, the error variance and the ratio of length to the base line length. 
These parameters were selected from a broad set of parameters, utilizing Principal Components 
Analysis. The measures which were evaluated are mainly those proposed by Buttenfield and 
Bernhardt: fractal dimension, bandwidth, segmentation, error variance and concurrence (Buttenfield 
1991); average angularity, average magnitude angularity, curvilinearity ratio, average vector 
displacement from baseline and average magnitude vector displacement from baseline (Bernhardt 
1992). The ratio of the line length to the base line length is also introduced. This measure describes the 
deviation of the line from its simplest form, that is, the base line. 

Based on the parametric description of line shape, segments can be allocated into similar shape groups 
through cluster analysis. The variables, which are selected with the application of Principal 
Components Analysis, exhibit low correlation between them and therefore a cluster analysis procedure 
can be applied. 

In order to achieve a successful classification for linear entities, lines should be homogeneous along 
their entire length. The development of a segmentation methodology is therefore a prerequisite for a 
successful classification. Such a methodology should identify “homogeneous” parts and differentiate 
parts with varying degree of complexity. A considerable number of researchers have already focused 
on linear features segmentation such as Plazanet et al. (1995) using man-made features, Wang and 
Muller (1998) and recently Dutton (1999) using coastlines. The authors developed a methodology for 
natural linear features partitioning into homogeneous segments (Skopeliti and Tsoulos, 1999). This 
methodology is based on line shape assessment, utilizing fractal dimension and the above-mentioned 
methodology for line shape description. 

The fractal dimension is utilized due to the fact that it exhibits certain advantages over other 
parameters which describe line complexity. Along with its value, an indicator of its ability to describe 
line character is provided. Moreover, it is a global parameter by definition, whereas others-such as 
average angularity-summarize local measures. Reliability criteria for the calculation of fractal 
dimension, have been formulated by Muller (1987) and   Nakos (1990).  
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“Homogeneity” refers to the existence of similar characteristics along a line segment. In order to 
achieve segmentation, a homogeneity criterion is essential. When utilizing the parametric description 
of line shape, such a criterion can be formed with the utilization of the parameters results and a range 
of values. When the nature of lines in a specific data set is unknown, it is impossible to set “a priori” 
the critical values of the parameters, which imply a change in line character. The purpose of the 
approach elaborated here, is the identification of all of the self–similar segments existing at the line to 
be segmented and the selection of those resulting to its partitioning into segments with different 
character. The criterion ensuring the ability of the fractal dimension to describe the shape of a line, 
allows for the identification of the starting and the ending vertex of the self-similar segments.  

The segmentation procedure is implemented in the following phases:  

�� Self - similar segments are identified along the line to be segmented 

�� Self - similar segments clustering: Self - similar segments, which are identified along the line to be 
segmented, are numerous and overlapping. They are described by the starting vertex, the ending 
vertex and the fractal dimension. In order to locate the parts along the line where spatial 
concentration (vertices contingency) and shape similarity (fractal dimension values proximity) 
exist, cluster analysis is utilized. The maximum value of clusters, which is essential for the 
application of hierarchical cluster analysis, is identified using an empirical index equal to the ratio 
of the length of the line to be segmented to the length of the shortest self-similar segment. When 
the clustering of self–similar segments is completed, a representative segment must be extracted 
from each cluster. The representative segment for each cluster is considered the one with fractal 
dimension value closer to the average value of the cluster.  

�� Preliminary segmentation: Representative segments may overlap. In order to avoid overlapping, 
the measures for the parametric line shape description are calculated and cluster analysis is 
performed.  In this phase the methodology for the parametric line shape description is used, since 
it is not possible to determine with the use of fractal dimension only, whether the overlapping 
segments share the same degree of complexity. On the other hand, the use of the parametric 
description of line shape in conjunction with cluster analysis  provide information on the 
segments' similarities. According to cluster analysis results, the following guidelines, 
characterized as Segment Management Rule I [SMR-I], are applied:   

��Overlapping segments belonging to the same cluster are joined, 

��A segment overlapping two segments belonging to different clusters is rejected, 

��A segment belonging in part to a segment of a different cluster is rejected.   

��Segmentation refinement: The preliminary segmentation results in non-continuous line coverage, 
since only self-similar areas are identified. In order to acquire a continuous coverage, the segments 
located in-between the self-similar segments are added to the segment list. These segments are 
either non self-similar or too short to allow for the calculation of the fractal dimension. However, a 
segment should exist in the final segment list, if it differs from its contiguous ones. This condition 
is checked through the calculation of the measures for line shape description and the application of 
cluster analysis. A self-similar segment and a non-self similar segment or a “short” one belonging 
to the same cluster, can be joined if they result in a self-similar segment. This way the self–similar 
areas identified initially are not influenced.  

��Final segmentation and segments clustering: When the segmentation process is completed, the 
parameters describing line shape are calculated for the final segments and cluster analysis is carried 
out for segment grouping.  

The result of this procedure is the partitioning of the line in homogeneous segments as well as the 
grouping of those segments in similar shape clusters. An example of the application of this 
methodology is shown in Figure 2. 

4. Consequences of generalization on the positional accuracy of linear features  
In this paragraph, a number of quantitative measures for the assessment of line shape change due to 
generalization are identified. These measures provide an “a posteriori” evaluation (Weibel 1995) for 
the comparison of generalization alternatives. In combination with existing quantitative measures for 
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the assessment of horizontal position change, these measures constitute an efficient solution for the 
assessment of the positional accuracy at the individual segment level. 

 

Figure 2. Application of the methodology for linear features segmentation  
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4.1 Influence on line shape 
Generalization operators (such as simplification and smoothing), which influence positional accuracy, 
are implemented by special algorithms. The degree of an algorithm’s influence on line shape is 
determined by the value of the tolerance used. Although the selection of a tolerance value sets an 
upper limit to the horizontal position error, the consequences to the shape of the cartographic line 
remain unknown.  

The group of the above-mentioned parameters can describe the shape of any line, original or 
generalized. In addition, through the parametric description of line shape, the shape change of a linear 
feature in comparison with the original line can be also assessed. In cluster analysis, the distance 
between two lines in the parameters’ space implies similarity. The distance between the original and 
the generalized line in the parameters’ space describes shape change. This is a quantitative assessment 
of shape change due to generalization. The average of the shape change values for the lines, which 
make up a group, represents the average line shape change for this group. 

When a generalization schema is applied to all line segments, generalized segments are grouped in 
different clusters than the original ones. The allocation of lines in the new groups is studied in order to 
draw conclusions on the trends of the modification of lines shape. Through the application of cluster 
analysis, which enables the comparison of generalized segments between them and the initial ones, a 
qualitative assessment of the line shape change is achieved. The degree of similarity is expressed 
through the classification results. The exploitation of the cluster analysis technique leads to the 
transformation from the quantitative to the ordinal scale. The examination of the generalized lines 
clustering results leads to conclusions, which vary with the method used.  

��When non-hierarchical cluster analysis is applied utilizing the centers of the original lines groups, 
the results describe the generalized lines similarity to the original ones. For example, allocation of 
the line to the initial group of smoother lines indicates that the simplification algorithms create less 
complex lines.  

��When hierarchical cluster analysis is applied, the generalized lines are clustered independently and 
the results express the similarity between them. A “good” generalization solution is the one 
preserving the number and the composition of the initial groups.  

The change in the groups’ composition due to generalization shows that all line categories should not 
undergo the same generalization schema. The application of an inappropriate generalization schema to 
a group of lines may alter their characteristics so drastically that they can no longer form a distinctive 
group. On the contrary, if the generalized lines, which were initially considered as a group, form a new 
group, it means that they have changed similarly. This is true only when the generalization schema 
preserves the shape of this line group. 

4.2 Influence on the horizontal position  
The horizontal position deviation between the original and the generalized line, can be assessed by the 
following measures: a. the average Euclidean distance from the original to the generalized line or from 
the generalized to the original line, b. the Hausdorff distance (Abbas et al., 1995), and c. the ratio of 
the area between the original and the generalized line to the length of the original line (McMaster, 
1987). The average change of the horizontal position for a group of lines is equal to the average of the 
values calculated for the individual line segments.  

4.3 Study of the positional accuracy 
Based on the assessment of the line shape change, the influence of the generalization elements 
(generalization operators, algorithms, tolerance values) can be studied. A number of issues can be 
addressed as the relation between line shape change and the generalization elements. Moreover, if 
groups of lines of different complexity exist in the data set, an in depth study can be carried out. The 
relation between line complexity and line shape change due to different generalization operators, 
algorithms and tolerances values can be examined. Likewise, utilizing the measures for the horizontal 
position error, several questions can be answered as the relation between the horizontal position error 
and the generalization elements (operators, algorithms and tolerance values). More specifically the 
following tools can be used: 
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��Horizontal position accuracy can be studied at the operator level, where the average horizontal 
position error values for different algorithms are compared or at the algorithm level, where the 
average horizontal position error values for groups of lines of different complexity are compared. 
The creation of graphs and tables with the items shown in Table 1 is proposed (Table 1). 

Study Level Item 1 Item 2 
1. Operator: Comparison between 
algorithms 

Average horizontal position error 
values for each algorithm 

Tolerance values 

2. Algorithm: Comparison between 
group of lines of different shape 

 Average horizontal position error 
values for each group of lines 

Tolerance values 

Table 1. Study of the horizontal position accuracy 

�� Shape preservation can be studied at the operator level, where the average shape change values 
for different algorithms are compared or at the algorithm level, where the average shape change 
values for groups of lines of different complexity are compared. The creation of graphs and tables 
with the items shown in Table 2 is proposed. In addition, the construction of a table showing the 
clustering results (hierarchical and non-hierarchical) of different generalization schemas (different 
algorithms and a range of tolerance values) and the comparison with the initial segments 
clustering is considered useful. 

Study Level Item 1  Item 2 
1. Operator: Comparison between 
algorithms 

Average of shape change measure 
values for each algorithm 

Tolerance values 

2. Algorithm: Comparison between 
group of lines of different shape 

Average of shape change measure 
values for each group of lines 

Tolerance values 

Table 2. Study of the shape preservation 

�� For the study of the positional accuracy, the creation of graphs and tables with the items shown 
in Table 3 is proposed. 

Study Level Item 1  Item 2 
1. Operator: Comparison between 
algorithms 

Average of shape change measure 
values for each algorithm 

Average horizontal position 
error values for each algorithm 

2. Algorithm: Comparison between 
group of lines of different shape 

Average of shape change measure 
values for each group of lines 

Average horizontal position 
error values for each group of 
lines 

Table 3. Study of the  positional accuracy. 

4.3.1 Application 

The above-described methodology for the assessment of generalization consequences to the horizontal 
position and the shape of linear features, has been applied in the framework of a pilot project 
implemented in the following stages:  

i. Linear features partitioning in homogeneous segments (see Figure 2),  

ii. Linear segments character description, utilizing a group of parameters and subsequent 
clustering in groups with similar shape (see Figure 2),  

iii. Implementation of several generalization solutions through the application of a number of 
different simplification algorithms and tolerance values,  

iv. Assessment of the positional accuracy of generalization results with regard to shape and 
horizontal position change. 

Several examples of the methodology implementation follow: 
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a. Comparison of shape change caused by simplification algorithms  
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Figure 3. Average shape change caused by different simplification algorithms for a range of tolerance 
values  

b. Algorithms influence on line groups of different shape 

Douglas - Peucker Simplification Algorithm
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Figure 4. Average shape change caused by the Douglas – Peucker simplification algorithm and a range 
of tolerance values on groups of lines of different shape (VSIN - very sinuous, SIN - sinuous, SM - 
smooth, VSM - very smooth)). 
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Reuman-Witkam Simplification Algorithm
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Figure 5. Average shape change caused by the Reuman - Witkam simplification algorithm and a range 
of tolerance values on groups of lines of different shape (VSIN - very sinuous, SIN - sinuous, SM - 
smooth, VSM - very smooth) 

c. Comparison of the clustering results of different generalization schemas 

Original Simplified
Scale x 1000 100 200 500 1000 200 500 1000
Line Code Group Hierarchical Non-hierarchical

4 VSM 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1

14 1 1 2 1 1 1 1
1 SM 2 2 2 1 2 1 1
7 2 2 2 1 1 1 1

10 2 2 2 1 1 1 1
13 2 2 2 1 2 2 1
16 2 2 2 1 2 2 1
2 SIN 3 3 3 2 2 2 2
3 3 3 3 2 3 3 2
6 3 3 3 2 3 2 2
8 3 4 4 2 3 3 2

12 3 3 3 2 3 3 2
5 VSIN 4 4 4 3 4 3 3

11 4 4 4 3 4 3 3
15 4 4 4 3 3 3 3
17 4 4 4 3 4 4 3
18 4 4 4 2 4 3 2

Nu. of Groups 4 4 4 3 4 4 3
 

Table 4. Hierarchical and Non-Hierarchical clustering results of simplified lines. (Douglas-Peucker 
algorithm for a number of scales (VSIN - very sinuous, SIN - sinuous, SM - smooth, VSM - very 
smooth)). 
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d. Horizontal Position Accuracy  
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Figure 6. Horizontal position error, expressed by the Hausdorff distance and the Average Euclidean 
Distance, caused by different simplification algorithms and a range of tolerance values. 

e. Overall Positional accuracy  
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Figure 7. Average shape change and average Euclidean distance between the generalized and the 
original line caused by different simplification algorithms and a range of tolerance values. 
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5. Assessment of the generalization quality 

5.1 Assessment tools 
In order to judge the quality of the generalized data utilizing the positional accuracy measures, there is 
a need for the development of specifications and the identification of the appropriate constraints. 
Assessment tools can determine whether the relevant constraints are satisfied. Measures are needed to 
describe quantitatively the generalization effects. Specific conditions are checked utilizing measures’ 
values and the post-generalization situation can be assessed. 

When examining the line generalization quality at the line level, the following constraints can be 
identified: metric (avoid imperceptible crenulations, avoid self-coalescence, minimize shape 
distortion), topologic (avoid self-intersection) and gestalt (preserve original line character) (Weibel, 
1996). Regarding the positional accuracy aspect of the generalization results, the following constraints 
can be considered: maintenance of shapes variety, preservation of the original characteristics of the 
lines, degree of simplification suitable for the new map scale, minimization of shape distortion and 
minimization of horizontal position error. These constraints belong to the metric, structural and gestalt 
categories. The constraint, which refers to the minimization of the line shape distortion, can be 
checked with the average shape change measure. Regarding the preservation of the original line 
character, criteria are based on information concerning the initial and the generalized data. For 
example, a basic characteristic of the generalized data is the ability to recognize the different line 
shapes as in the original data. In order to ensure this, the number of different shapes existing in the 
original data should be retained. Several measures can be used for these constraints: the number of the 
generalized line groups and the synthesis of the generalized lines groups. In order to check the 
horizontal position accuracy constraint, a condition can be formed using the horizontal position error 
values and the legibility threshold of the new scale. 

These assessment tools are based on the preservation of certain properties of the initial data expressed 
by the constraints and thus the need for procedural knowledge to define “the correct generalization 
solution” diminishes. The degree, to which the constraints are satisfied, depends on the scale change 
and the scope of the new map. The authors carried out a more elaborated approach on the formation of 
assessment tools utilizing measures and constraints (Skopeliti and Tsoulos, 2001). 

5.2 Knowledge acquisition 
The second application refers to the correlation of the cartographic knowledge with the change of 
positional accuracy. This can be implemented using "correct generalization examples" and the 
measures of change of the two components of positional accuracy. Recent research focuses at the 
correlation of accepted generalization solutions (operator, algorithm tolerance values) with line shape, 
as it is described by a group of parameters. In particular, Weibel et al. (1995) apply a machine learning 
technique to derive prototype rules, which relate the tolerance values of the Lang simplification 
algorithm to groups of lines of different complexity. Line shape (structure recognition) is described by 
a group of parameters (utilizing cluster analysis several ranked classes per attribute are created). A 
user, who selects the Lang algorithm tolerance values in order to match manual generalizations, 
provides procedural knowledge. In addition, Lagrange et al. (2000) use neural networks to relate the 
tolerances values of the Gauss smoothing algorithm with groups of lines with different complexity. 
Line shape is described by a group of parameters and procedural knowledge is acquired in an 
interactive environment, through the identification of a range of tolerances for the smoothing 
algorithm, utilizing - as reference - manually generalized features. In this paper, a different approach is 
proposed. Measures, which describe the positional accuracy, are computed for manually generalized 
data or cartographically acceptable generalization results, which serve as exemplars. These measures 
are also computed for the “automatically” produced generalization results. Based on these measures, 
"exemplars” and "automated generalization” results can be compared quantitatively and related 
objectively without human intervention. The methodology for shape and structure recognition is 
applied to the original data (Skopeliti and Tsoulos, 1999). Thus structural knowledge is described 
formally and lines are clustered into similar shape groups. Utilizing machine-learning techniques, 
structural knowledge can be related to the automatic generalization solution, which is closer to the 
exemplars and procedural knowledge can be acquired. 
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