
1

Multi-Scale Spatial Database and Map Generalisation

Sheng Zhou & Christopher B. Jones
Department of Computer Science

Cardiff University
Cardiff, CF24 3XF
United Kingdom

 {s.zhou, c.b.jones}@cs.cf.ac.uk
Fax: (+44) 29-20874598

Corresponding author: S. Zhou

Abstract

The constitution of multi-scale spatial databases is closely linked to map generalisation. Elements
of a multi-scale spatial database include multi-scale data models, multi-scale data storage
schemes, methods to generate multi-scale datasets and methods to access these datasets and
present results. In this paper we proposed a formal multi-scale spatial data model with an
information-rich structure which supports representation of multiple objects at the same location
and the same scale. In using existing generalisation procedures to generate multi-scale spatial
datasets, an indicator which conforms to the retrieval precedence of vertices and a mapping
mechanism to link scales and indicator values are required. The binary tolerance tree (BVT) is
presented with the objective of meeting these two requirements. When data are retrieved from a
multi-scale database, conflict resolution procedures can help to present the results in legible form.
We present a shape-preserving method for on-line linear feature displacement using local
coordinate transformation and analysis on curve characteristics. Finally, a brief introduction on
several multi-scale geometry storage schemes as well as some conclusions drawn from
experiments is given.

Keywords Multi-scale spatial database, line displacement, binary tolerance tree (BVT)

1. Introduction

Geographical space is an extremely information-rich environment. Human perception on geographical
phenomena via observations at different time and from different points of view (which may be
regarded as scales) generates mental images of these phenomena. Subsequently, geographical objects
are recognised from these mental images and concepts of map feature classes are abstracted. Since an
object may have different spatial forms at various scales with the same semantically unique
identification, scale may be treated as a fifth dimension, alongside the three spatial dimensions and the
temporal dimension in a 5-D space.

A map is a model of a part of geographical space while map features represent geographical
phenomena. A conventional map reflects our knowledge of a part of geo-space with the limitation that
only a small subset of all phenomena which present at a certain time and a fixed scale can be included.
The advance of GIS and spatial database [1] technologies has not changed the way we access spatial
data fundamentally as a conventional GIS or spatial database may still best be described as a collection
of maps at various fixed scales without support for scale and temporal changes in geographical
phenomena.

A truly integrated spatial database should be seamless over spatial extensions and temporal changes as
well as scale changes. While scale issue is our main concern in this paper, such an integrated database
is a multi-scale spatial database. The main issues relevant to the design, implementation and
application of a multi-scale spatial database include:

• Multi-scale spatial data model
• Multi-scale database schema and geometric data storage schemes for DBMS to support efficient

data retrieval based on spatial extent, scale and other properties.
• Generating multi-scale spatial datasets from various data sources to populate a multi-scale spatial

database
• Producing legible presentation of data retrieved from a multi-scale spatial database

2

From a database-centred point of view, generation of multi-scale spatial datasets may be regarded as a
pre-process while the presentation of results is a post-process. Therefore we believe the first principle
of design and implementation of a multi-scale spatial database is to strike a balance between the pre-
process and the post-process [2]. We also believe that map generalisation are essential to these two
processes.

There have been several studies on designing multi-scale spatial models (e.g. [3]). We will discuss
some limitations of existing models and present a conceptual model for multi-scale spatial data in
section 2. In section 3 and 4 we will discuss issues in applying map generalisation procedures to
generate multi-scale spatial datasets and present query results from a multi-scale spatial database. In
section 5 we present several storage schemes, some of which are built upon ideas presented in [4-6]. In
section 6 a brief introduction to proposed future works is given.

2. Spatial Object with a Scale Dimension and Multi-scale databases

2.1 Scale, Scale Interval and Scale Range

As already mentioned, scale may be broadly regarded as the reflection of viewpoint of observation. For
clarity we will follow the standard cartographic terminology in this paper. Therefore, for two scales or
scale values s1, s2 ∈ (0, ∞) and s1 < s2, we regard s2 as a larger scale corresponding to a more detailed
map and s1 as a smaller scale for a map with less details.

A scale interval is defined by two scales: SI = [sL, sH], sL ≤ sH (or alternative forms: (sL, sH), [sL, sH) and
(sL, sH]). We regard sL as the lower scale bound and sH as the higher scale bound of the scale interval.

A scale range is a set of scale intervals: SR = {SIi | i = 1, n} with MIN(sLi) and MAX(sHi) as its lower
and higher scale bounds.

2.2 Multi-Scale Spatial Object (MSO)

A spatial object is an identifiable instance of a geographical concept (or spatial object type). Therefore,
a spatial object has its unique object identifier. As a geographical phenomenon occurs across a range of
scales, a spatial object is associated with a scale range (sr) property. For reasons stated later, in some
cases this scale range may be divided into two scale ranges: dominant scale range (dsr) and recessive
scale range (rsr).

For a scale value s ∈ sr, there is a geometry which represents the geometric form of the object at the
scale. All geometric representations form the geometry set (gs) of a spatial object. Note that which one
of these geometries will be retrieved to represent the spatial object may not be solely decided by scale.
However, normally it is convenient to index these geometries by scale values.

A spatial object also contains a presentation compatibility set (pcs) to indicate its compatibility with
other objects (the term "compatibility" generally refers to phenomena that can be graphically
overlapped on the presentation media). This set may contain individual values for each instance of a
spatial object type or it may be defined as a class property (similar to static members in a C++ or Java
class).

Geographical phenomena often show a hierarchical structure over scale transition and a spatial object is
often derived from a group of objects at larger scales while the object itself may be a source of another
spatial object at smaller scales. To track these relations, a spatial object may contain two reference sets:
derived-from and source-of.

Finally, a spatial object normally has other application-dependent properties.

2.3 Multi-Scale Geometry (MGEO)

It is impractical to store a geometry for any scale value in the scale range of a spatial object due to the
virtually infinite scale values in the range (assuming sL<sH). Methods have to be found to share
geometric data among various geometries in the geometry set of a spatial object. For this reason we

3

define the concepts of multi-scale geometry on the basis of single-scale geometric data models (e.g. [7-
9]).

2.3.1 Single-scale geometric data structures and transformation

From a vector point of view, we regard any geometric object as a set of points constructed by different
rules. There are three simple geometry types and an indefinite number of complex geometry types built
on simple types as well as nesting complex types. Note that for these geometry types only those
properties closely related to our later discussions are defined.

2.3.1.1 Simple geometries (SG)

A simple geometry is defined at a fixed scale s:
• Point: ps(x, y, z) or P(s) ={ p(x, y, z)} in a set form.
• Simple Polyline: PL(s)={ps

i|i = 1, n; n ≥ 2} which may be self-intersected but not closed; i is
regarded as the sequence number of vertex pi; p1 and pn are the starting and ending points of PL.

• Simple Polygon: PG(s)={ps
i|i = 1, n; n ≥ 3}which may be self-intersected; i is regarded as the

sequence number of vertex pi;

Supported simple geometry transformations include:
• Tp_p(P1(s) → P2(s)): P1={p1(x1,y1,z1)} and P2 = {p2(x2, y2, z2)| x2 ≠ x1 ∨ y2 ≠ y1 ∨ z2 ≠ z1 }. This

transformation represents a point displacement operation.
• TPL_PL(PL1(s) → PL2(s)): PL1 = {pi|i = 1, n; n ≥ 2} and PL2 = {pj |j = 1, m; n ≥ m ≥ 2; pj ∈ PL1 ∨ pj

= TP_P(pk) ∈ PL2, pk ∈ PL1 }. This transformation represents a line simplification operation from a
generalisation point of view.

• TPL_P(PL(s) → P(s)): P = { p(x, y, z)}⊂ PL. By applying this transformation, a polyline collapses to
a point.

• TPG_PG(PG1(s)→ PG2(s)): PG1 = {pi|i = 1, n; n ≥ 3} and PG2 = {pj |j = 1, m; n ≥ m ≥ 3; pj ∈ PL1 ∨ pj

= TP_P(pk) ∈ PL2, pk ∈ PL1 }. This transformation simplifies the boundary of a simple polygon.
• TPG_P(PG(s) → P(s)): P ={ p(x, y, z)}⊂ PG. As TPL_P, a simple polygon collapses to a point.

We regard TPL_PL and TPG_PG as non-destructive transformations because the type of the geometry
involved is not changed. On the other hand, TPL_P and TPG_P are destructive transformations.

2.3.1.2 Complex geometries (CG)

A complex geometry is a collection of simple geometries as well as other complex geometries.
Different rules for collection define different complex geometry types.

Examples of complex geometries include:
• Multi-Segment Polyline: MPL(s) = {(MPLi/PLi(s), diri ∈ {-1, 1}) | i = 1, n} which is a sequence of

end-connecting simple or multi-segment polylines. MPLi/PLi(s) means that the members in the set
can be either simple polylines or other multi-segment polylines. diri represents the direction relating
to the original polylines.

• Multi-Segment Polygon: MPG(s) = {(MPLi/PLi(s), diri ∈ {-1, 1}) | i = 1, n} whose boundary is
defined by a closed sequence of end-connecting simple or multi-segment polylines.

• Network: a collection of simple or multi-segment polylines connected at network nodes
• NetworkNode: NN(s) = (MPLi/PLi(s), diri ∈ {-1, 1})
• Network: N(s) = {NNi(s) | i = 1, n}

• Complex Polygon (CPG): CPG(s) = { MPG/PG, {MPGi/PGi| i = 0, n} } which has one simple or
multi-segment polygon as boundary and may contains holes.

Some other potential complex geometries defined by simple set construction rules include:
• Point Collection(PC): a point set
• Polyline Collection (PLC): a set of simple/multi-segment polylines
• Polygon Collection (PGC): a set of simple/multi-segment/complex polygons
• Mixed Geometry Collection (MGC): a set of geometries of various types

4

There are many transformations which may be defined for these types. We are particularly interested in
those transformations which

• do not change the type of the complex geometry;
• applying only non-destructive transformations to embedded simple geometries;
• for complex polygon and various collection types, a component which is simple or complex is

eliminated entirely during the transformation.
These transformations form the foundation for defining and constructing simple and complex multi-
scale geometries. There are other destructive transformations of complex geometries as well as
transformations between simple and complex geometry types which may be regarded as corresponding
to various generalisation operations.

2.3.2 Simple and complex multi-scale geometry

A multi-scale geometry has a scale range which contains at least one scale interval of non-zero length.
For each point in a multi-scale geometry, a scale range which may have zero-length interval is
associated.

2.3.2.1 Simple multi-scale geometry

Under the multi-scale context, a multi-scale point (MS point) has a scale range property sr:
• MS Point: pms =(ps(x, y, z), srP)
The definitions of simple MS polyline and MS polygon are similar to the single-scale ones except that
the vertices in a MS polyline/polygon are MS points:
• Simple MS Polyline: MSPL = ({pms

i | i = 1, n; n ≥ 2}, srPL), pms
i.srP ∩ srPL ≠ ∅

• Simple MS Polygon: MSPG = ({pms
i | i = 1, n; n ≥ 3}, srPG), pms

i.srP ∩ srPG ≠ ∅

Using the polyline type as an example, the process of constructing a multi-scale geometry from various
single-scale geometries of a spatial object can be formally described as follows:

Given two single-scale simple polylines PL1(s1) and PL2(s2), s1 > s2 as representations of the same
spatial object, if PL2 = TPL_PL(PL1), a MS polyline may be defined as:

MSPL1= ({pms
i(p

s
i, srp)| p

s
i ∈ PL1 ∨ ps

i = TPP(ps
j) ∈ PL2, p

s
j ∈ PL1 }, srPL_1)

At this stage, srPL_1 = {[s2, s2], [s1, s1]}. For vertices contained by PL1 and by PL2 (directly or by a TPP

transformation), the scale range is {[s2, s2], [s1, s1]}; for other vertices not presented in PL2, the scale
range is {[s1, s1]}.

If there is not any representation PLi(si) with a scale s1 > si > s2, which is a reasonable assumption as in
practice only a finite set of single-scale representations will be available (e.g. the representations of the
same object in maps of different scales) for a spatial object, the representation required has to be
interpolated from existing representations (i.e. PL1 and PL2). We may use PL1 as an approximation at
scale si ∈ (s2, s1). Alternatively, we may decide on an intermediate scale value sm ∈ (s2, s1) and use PL1

at [sm, s1) and PL2 at (s2, sm). Consequently the scale range of vertices which are in both PL1 and PL2 is
extended to become {[s2, s1]} while for other vertices it is {[s1, s1]}(the first case) or {[sm, s1]}. In either
case, the scale range of the multi-scale geometry MSPL1 is extended to be: srPL_1 = {[s2, s1]}. Indeed, in
practice we use single-scale maps in the same manner, assuming they are good approximations at
scales relatively close to the maps’ designated scales.

For multi-scale spatial objects with multiple representations, this process may be repeated to merge
other single-scale geometries into the multi-scale geometry. In case there are single-scale geometries
which can not be merged by the operations defined above as some or all of their vertices can not meet
the transformation criteria, one or more new multi-scale geometries will be required to represent the
multi-scale spatial object.

When a multi-scale geometry with a scale range {[sn, s1]} is generated, we regard those vertices with
scale ranges in the form of {[si, s1]} while s1 ≥ si ≥ sn as subsetting vertices of the geometry. Other non-
subsetting vertices normally correspond to operations like vertex displacement during the process.

2.3.2.2 Complex multi-scale geometry

5

Complex multi-scale geometries contain simple multi-scale geometries or other complex multi-scale
geometries as their components, which are constructed under the constraints of the rules for
constructing simple multi-scale geometries as well as the non-destructive transformation rules
described in 2.3.1.2.

It is worth noting by allowing a point in one geometry to be referred by other geometries and a
geometry to be a component of more than one complex geometry, the model described above can be
more flexible and storage-efficient. However, from a practical point of view, with the exceptions of
points or geometries stored as standalone entities in an implementation, these types of references will
be very inefficient in a DBMS environment. Therefore, in the following discussions we are not going to
explore these possibilities beyond the above exceptions.

2.4 Scale-Transition, Dominant and Recessive Spatial Objects

2.4.1 Location and scale transition

Spatial objects represent information of geographical phenomena at various locations on the earth’s
surface. The minimum physical size of a location depends on scale. At the largest scale of interest,
there may be only one or a few mutually-compatible phenomena occurring at a single location. At a
smaller scale, a location is the aggregation of a group of locations at larger scales. As a geographical
phenomenon may occur over a range of scales, several incompatible phenomena which are separated
into different locations at larger scales may occur in the same location at a smaller scale. In the process
of conventional map-making, we select the one or a few compatible phenomena to present according to
our requirement.

In a spatial database a spatial dataset is stored inside the database space while queries on the database
retrieve data and information and present them on some sort of media in a presentation space which
can then be further interpreted by the users.

To a great extent, a paper map may also be regarded as a primary spatial database. One fundamental
characteristic of a conventional map is that its database space and the presentation space are the same
with a physical linkage between the storage and the presentation of spatial information. Consequently,
the limited amount of presentation area in the presentation space restricts the number of spatial objects
which can be stored and presented, i.e. only one (or a few compatible) spatial object may occupy a
certain location. On the other hand, a computer-based spatial database physically separates the database
space from the presentation space and spatial objects are linked logically to their presentations in the
presentation space. In theory, it is possible in a multi-scale spatial database to store all available
knowledge and information of any location at any supported scales, which will then provide multiple
choices of retrieval according users varying preferences.

Indeed, if a multi-scale spatial database is constructed for a single purpose only, e.g. providing legible
topographical maps at any scales, the demand of retrieval is then predictable and there is no need to
store data of multiple objects at the same location. In a general-purpose spatial database, queries based
on different, often mutually conflicting, requirements have to be supported and hence it is highly
desirable to have a dataset with richer information stored.

2.4.2 Dominant and recessive spatial objects

For a location at a certain scale within the scale ranges of several incompatible objects, all these objects
may be easily stored in a computer-based spatial database. However, which of these objects will be
retrieved has to be decided at run-time on information specified by users, which is, however,
unfortunately unpredictable at the time when the database is constructed. Nevertheless, when a conflict
at a location occurs at the construction stage, a default decision may be made to select one or a few
compatible objects as dominant objects (i.e. to appear in the final presentation) at this scale, where
others at the location become recessive at this scale. Consequently, the scale range (sr) of an object
may be divided into two sub-ranges: a dominant range (dsr) and a recessive range (rsr). In practice, it
might be that the sr is used along with the dsr. When a default query is submitted, the dsr is used to
retrieve the dominant object(s) at the query scale; otherwise, the sr is used to retrieve all objects at the
location and further processes are then carried out possibly by the application programs to decide the
non-default dominant object(s).

6

In summary, we believe it is the concepts of location aggregation and multiple competing objects at a
single location that give our model a stronger power of expression and differentiate it from many
existing ones.

3. Map Generalisation and Generation of Multi-Scale Spatial Dataset

Using processes described above, individual representations of a multi-scale spatial object can be
merged to one or several multi-scale geometries which form the geometry set of the spatial object.
These multi-scale geometries covering various scale ranges may have different types (simple, complex,
etc.). The union of scale ranges of all multi-scale geometries in the geometry set forms the scale range
of the spatial object.

As existing single-scale paper maps (and map series) and their digitised equivalents remain the main
source of our information and knowledge on geographical space, a multi-scale spatial database will
have to be built on the basis of these datasets, i.e. to generate objects’ representations at scales smaller
than the designated scale of the source map. Since map generalisation is regarded as the process of
generating relatively small scale maps from more detailed source maps, it is natural to make use of map
generalisation procedures to facilitate the generation of integrated spatial datasets.

At present, we restrict our discussion to processing a simple geometry at a large scale to create multi-
scale geometries. The main issue in this process is to define a vertex precedence with an objective
indicator that may be mapped to scale values.

3.1 Decomposing the Scale Space

There are two ways to classify vertices in a geometric object to decide their scale ranges. We may pre-
define a scale range with adjacent scale intervals like {[sn, sn-1), ...[si+1, si), [si, si-1), ...[s2, s1]} and for
each of these intervals we check whether a vertex should be present. The union of all intervals a vertex
presents forms the scale range of this vertex. We regard this method as the key-space decomposition
[10] approach as it is undertaken on the basis of a pre-defined decomposition strategy of the key-space
(i.e. the scale space), which is also used in variouswith regard to space. Alternatively, following the
example of R-Tree construction, we may want to find some method to calculate the scale range directly
for each vertex on the basis of its characteristics (e.g. its relations with other vertices in the geometry).
This is the object-space decomposition [10] approach as the scale space is decomposed according to the
concrete objects (vertices).

3.2 Methods for Vertex Scale Range Classification

3.2.1 Key-Space decomposition methods

Most line simplification algorithms may be regarded as key-space decomposition methods when
adopted for vertex classification. In the Douglas-Peucker algorithm, for example, a tolerance value is
set before a subset of vertices are selected by the displacement criterion. The remaining problem is how
to link the parameter value(s) (in this case, the tolerance length) to scale.

By using very fine pre-defined scale intervals, key-space decomposition methods can classify vertices
and produce vertex scale ranges to any required precision although the whole process may become
extremely tedious. On the other hand, it is understandable there is still some chances of under-sampling
or over-sampling when a particular dataset is processed, which will not satisfy perfectionists.

3.2.2 Object-Space decomposition methods

Object-space decomposition methods have the potential of generating the exact scale ranges for
vertices and hence provide better support to "continuous scale changes" [6]. Some of methods falling
into this category include the BLG-tree [6] which calculates tolerance values of vertices in a top-down
manner to construct a binary vertex tree with maximum tolerance value stored for each node, and the
band-width hierarchical tree [11] which is a top-down or bottom-up constructed binary tree structure.

7

The difficulty in adopting the above methods to create multi-scale geometries which will be stored in a
DBMS is that either the tolerance values or the bandwidth values are not decreasing monotonically
from the top of the binary tree down to the bottom. In other words, these values do not conform to the
order in which the vertices are traversed. Therefore, for a given tolerance or bandwidth value, all nodes
in the tree have to be checked in order to select the qualified vertices, which will cause severe
performance problem in a DBMS environment.

3.3 BVT-Tree

In this sub-section we introduce the Binary Vertex Tolerance Tree (BVT-tree), an object-space
decomposition method which solves the problem associated with the BLG tree and the hierarchical
bandwidth tree. The vertex tolerance used in the BVT-tree is calculated in the same way as in the BLG
tree.

3.3.1 Convex hull and geometry sectioning

An issue in applying some hierarchical process methods to geometric objects is to decide the right
starting point(s), especially for linear objects which extend beyond endpoints [12] (e.g. in Fig. 1, the
polyline extends beyond the two endpoints v1 and v28). Before calculating tolerance values for a
geometry, we calculate the convex hull of the geometry to divide the geometry into sections at the two
vertices (section vertices) which are the endpoints of the longest diagonal line in the convex hull. For a
polyline, if a section vertex is not an original endpoint, the convex hull sectioning process will be
repeated on the section between this section vertex and the neighbouring endpoint until there is no
remaining "extending beyond endpoints" section; for a polygon, two sections are generated.

3.3.2 Vertex tolerance promotion

When a geometric object is sectioned, a BLG-like process will be carried out for each section in the
geometry. The tolerance value for a section vertex is the distance between the two section vertices.
When a section vertex is shared by two sections, the larger value will be used.

When all vertices are processed, a check will be carried out to find out any node in the binary tree with
a tolerance value larger than its parent node and to "promote" its parent nodes’ tolerance value to this
larger value. This process will be repeated until the tolerance values of all nodes are monotonically
decreasing from the top down to the bottom, which reflects the precedence of vertices in the tree
hierarchy. We name this process as tolerance promotion.

The rationale behind this method is that vertices in a geometry are inter-dependent in the process of
tolerance calculation. The presence of the larger tolerance value of a child node depends on the
presence of its parent nodes which precede it in the tree hierarchy. For example, in Fig. 2, vertex v3 has
an initial tolerance of 4.03 relating to the two section vertices v1 and v4 while v2 has a tolerance of 4.97
which is larger than that of v3. However, this larger value depends on the presence of v3, otherwise, the
tolerance of v2 in relating to v1_v4 is only 2.84. On the hand, tolerance of v3 relating to v2 and v4 is even
larger (5.47, indeed, it can be proven geometrically this will always happen under these circumstances)

V1

V12
V22

V28

Fig. 1 Geometry sectioning using convex hull. The object (thick
line) is divided to three sections: v1_v12, v12_v22 and v22_v28)

8

but it also depends on v2. For a query tolerance value between 4.03 and 4.97, v3 will not be retrieved if
the initial tolerance of v3 (4.03) is used, but, v2 will be retrieved while its larger tolerance value can not
be derived because of the absence of v3. On the other hand, if we change the tolerance of v3 to 5.47
which depends on v2, for query tolerance between 4.97 and 5.47, v2 will not be retrieved and v3’s larger
tolerance will not be derived either. Therefore, we promote v3’s tolerance from 4.03 to 4.97, which will
guarantee a proper retrieval for all query tolerance values.

3.3.3 BVT-Tree reconstruction

When the tolerance calculation is completed for an object (Fig. 3), its BVT-tree has a forest shape with
all section vertices at the top (Fig. 4). The process of tolerance promotion will then be carried out and
the forest will be readjusted to form a true binary tree with one root node (one of those with largest
tolerance value). During this process, a pair of parent-child nodes may be swapped in order to reduce
the overall height of the tree (in this example, the height is reduced by two levels). The reconstructed
BVT-tree (Fig. 5) is then a binary tree in which each node has a tolerance value no smaller than the
tolerance(s) of its child node(s) and whose left child node has a smaller sequence number (i.e. nearer to
the starting vertex of the geometry) and whose right node has a larger one.

42

41

34 32 29

21
19

16

15

18

14

1

12

9
8

3 2

43

Fig. 3 A simple polyline with 43 vertices and two sections(v1_v41 & v41_v43)

1 41 43

29 42

7

123

32

31 38

2 6

4

5

8

11

9

10

15

14

13

19

18

16

17

23

21

20 22

25

24 27

26 28

30 34

33 37

35

36

40

39

9.65

10.42

12.75

14.12

5.24

5.31

0.8

0.52

231.8 231.8 3.11

29.28 1.02

1.57

0.78

0.23

0.21

3.82

0.78

0.44

0.23

1.29

1.22 2.37

1.79

0.12

3.63

1.14

1.13 0.25
0.04

0.09 0.04

0.27

0.04 2.81 1.50

0.00 1.43

0.58

0.17

0.26

Fig. 4 The initial forest-shape BVT-tree

V1

V2

V3

V4

4.03

5.47

2.84

4.97

V1

15.11
V4

15.11

V3

4.03

V2

4.97

V1

15.11
V4

15.11

V3

4.97

V2

4.97

Fig. 2 Vertex tolerance promotion

9

3.3.4 Linking vertex tolerance to query scale

In our case, the requirement to link generalisation parameters with actual query scales is to map a query
scale value to the tolerance value of vertices in BVT-tree in order to retrieve data at the required level
of detail from a multi-scale database.

First, we define a default screen resolution Rb
scr which represents the finest resolution on a presentation

medium (VDU, paper, etc.). This value is decided with reference to the process of rasterising vector
objects, i.e. the threshold when a new point inserted into a line segment will not generate new pixels.
This threshold is an approximate or average one due to the impact of the orientation of line segments
although we may calibrate the tolerance values of vertices in some way with orientation of segments
taken into consideration. Indeed, the process of rasterisation may serve as a metaphor to illustrate the
geometric meaning of the vertex tolerance used in the BVT-tree.

Given the physical size of the query window DE and the corresponding field extent ME, the query scale
sq is DE/ME and we can map it to a tolerance value Rm = Rb

scr / sq. Obviously, by setting a different
screen resolution value, we can retrieve data at different detail levels for the same sq.

Since cartographical scale values may be represented reciprocally by resolution values
(Scale*Resolution = Constant) which change linearly and have the same metric as the BVT tolerance’s
and at the same time the tolerance value has a relatively clear geometric and cartographical meaning, it
is not very difficult to establish a simple and direct mapping between scale values and tolerance values
used in the BVT-tree. It may not be the case for other methods, particularly when multiple parameters
are used.

3.4 Other Issues Relevant to Calculating Scale Ranges for Vertices

The BVT-tree method presented above is in its basic form, which does not consider the distance
between a vertex and other vertices or line segments in the same geometry or other neighbouring
geometries. This distance may be smaller than the tolerance value assigned to it. This problem may be
solved by reducing the vertex’s tolerance value (an equivalent to deletion) or by displacing it. Such
conflicts may also be a sign of needing to change the type of the object (e.g. a simple polyline becomes
a network) which will result in creating a new multi-scale geometry. For conflicts between different
geometries, deletion or displacement may also provide solutions. Alternatively, a selection operation
may be needed to choose some of the objects while others become recessive at this scale and beyond.
Generally speaking, there may not be a "best" solution to these conflicts but rather several equal
alternatives that may be chosen according to different generalisation philosophies and for various
purposes.

The BVT-tree is presented here only as a simple example to demonstrate the principal requirements of
methods for generating object-space decomposed multi-scale spatial datasets in a DBMS environment:
1) to select an indicator which conforms to the scale-based retrieval precedence of vertices in
geometries and 2) to define a one-to-one mapping between the indicator space and scale space. From a

1

41

4329

42

7

12

3

32

31 38

2 6

4

5

8

11

9

10

15

14

13

19

18

16

17

23

21

20 22

25

24 27

26 28

30 34

33 37

35

36

40

39

5.31

5.31

14.12

14.12

14.12

14.12

0.8

0.8

Fig. 5 BVT-tree after tolerance promotion and re-shaping

10

practical point of view we do not even suggest it is a good method in its current form. We believe a
practical method for generating multi-scale spatial datasets should first meet the above requirements
and also address the relevant issues discussed in this sub-section, which might be the combination of
several generalisation operations.

4. Map Generalisation and Presentation of Results of Querying Multi-Scale Database

4.1 Conflicts in the presentation of query results from a multi-scale spatial database

In the foreseeable future, users who make queries on a multi-scale spatial database will still want the
information they required to be presented on a VDU or as hard copies which are in a form comparable
to traditional paper maps with limited presentation space. Therefore, besides normal graphic conflicts
caused by varying types and sizes of map symbols specified by users, a multi-scale spatial database
with the information-rich architecture proposed in this paper could also generate conflicts when objects
which are originally recessive are retrieved, as the inherently incompatible nature of these objects
makes it impossible to solve these conflicts at the pre-process stage. There is, however, no space in this
paper to bring this issue further.

For methods to solve either of the two types of conflict, the first priority is performance as these
processes are carried out on-line during interactive query sessions. Some previous methods for conflict
resolution (e.g. [13, 14]) have severe performance overheads for on-line use but significant progress in
this regard has been made recently [15, 16] to meet the requirements of on-line application.

4.2 A Shape-Conserving Line Displacement Method

In this sub-section we present a method for on-line linear feature displacement which preserves the
shape characteristics of the object.

Fig. 6(a) shows the original polyline, displacement vector (v0_v0N) and the displaced polyline. We use
the notation vi(x, y) and viN(x, y) to refer to a vertex and its displaced position in the original coordinate
system and v’i(x’, y’) and v’iN(x’, y’) for their transformed positions in a new coordinate system (Fig.
6(b)). Assuming the displacement vector v0_v0N is applied at vertex v0, scan lines will be derived from
v0N to find the nearest (in sequence, not in distance) points of tangency vL and vR. Then vertices
between vL and vR (inclusive) will be transformed to a local coordinate system with v’0 as the origin and
v’0_v’0N as the positive Y’ direction. In this local coordinate system, the displacement of v’0 is d’0 =
v’0N.y’ - v’0.y’. This displacement will be evenly distributed through the section of the polyline v’0_v’L
and v’0_v’R. Two parameters are used to control the distribution to make sure the curvature of the
sections will not be changed too much. One parameter is the compression rate RC ≤ (v’LN.y’ - v’0N.y’) /
(v’L.y’ - v’0.y’) < 1 (if v’L.y’ > v’0.y’, as the section will be "compressed"); the other is the stretch rate RS
≥ (v’LN.y’ - v’0N.y’) / (v’L.y’ - v’0.y’) > 1 (if v’L.y’ < v’0.y’, as the section will be "stretched").

Using v’L as an example, if (v’L.y’ - v’0N.y’) / (v’L.y’ - v’0.y’) ≥ RC, d’L(displacement of v’L) is 0 and v’L
will not be displaced; otherwise:

d’L = v’LN.y’ - v’L.y’ = (v’L.y’ - v’0.y’) * RC + (v’0N.y’ - v’L.y’)

X

Y

Y’

X’

v’0

v’0N
v0

v0N

v’L v’R

(a)
(b)

Fig. 6 Shape preserving line displacement - I (sectioning at points of tangency)

11

This value then becomes the original displacement value for the next section with v’L as the right
section point. In general, to meet the RC criterion, d’i (the displacement on Y’ for a vertex v’i between
v’L and v’0), is:

d’i = v’iN.y’ - v’i.y’ = (d’0-d’L)*(v’i.x’ - v’L.x’)/(v’0.x’ - v’L.x’) +d’L
which will be d’L when v’i.x’ = v’L.x’ and d’0 when v’i.x’ = v’0.x’.

The formulas for stretch cases are similar. d’L is 0 if (v’L.y’ - v’0N.y’) / (v’L.y’ - v’0.y’) ≤ SR and otherwise
d’L = v’LN.y’ - v’L.y’ = (v’L.y’ - v’0.y’) * RS + (v’0N.y’ - v’L.y’) and for an arbitrary vertex v’i, we also have:

d’i = v’iN.y’ - v’i.y’ = (d’0-d’L)*(v’i.x’ - v’L.x’)/(v’0.x’ - v’L.x’) +d’L

A more computation-efficient alternative to sectioning with points of tangency is to use local
maximum/minimum points in the new coordinate system for sectioning object (Fig. 7).

After a displacement is distributed to one or more sections on each side of the point of impact (v’0), the
vertices whose coordinate values have been modified accordingly will be transformed back to the

v’0

v’0N

v’L

v’R

Fig. 7 Shape preserving line displacement - II (sectioning at local points of extreme)

Original
polyline

Local Max-min
sectioning

Tangent Points
sectioning

Fig. 8 Comparison of tangent point sectioning and max-min point sectioning

12

original coordinate system. Fig. 8 shows some more examples of the methods (currently implemented
with AutoLISP in AutoCAD).

The main advantage of the methods presented here is that all basic curves in an object are preserved. In
addition, the use of the two control parameters RC and RS prevents large changes of curvature of basic
curves. Impacts may be restricted inside a relative local area. As only affected vertices will be
processed, these methods (especially the one using local max-min vertices for sectioning) are
potentially very efficient and capable of working in an on-line environment.

From our experiment (Fig. 8), we find that results generated by these methods are quite sensitive to the
characteristics of objects. It seems that the combination of the tangent point based and local max-min
point based methods may generate better results in many situations.

At present, we use fixed values for the two control parameters in our experiment. For real applications,
these values may be decided adaptively, e.g. taking the X’ offset of a section (i.e. v’0.x’ - v’L.x’) into
consideration. In addition, the issue of handling propagated conflicts has not been addressed here as the
prime objectives of designing these methods are shape preservation and running efficiency. Indeed, we
believe it is not difficult to link these methods to other existing methods for conflict detection to form a
complete solution for real applications.

5. Multi-scale Geometry Object Storage Schemes in Brief

Based on the multi-scale data model presented in section 2, we have designed several storage schemes
for simple multi-scale geometry objects and implemented them in an extendible object-relational
DBMS Informix using C++ and Informix’s Object Interface for C++ v.2.6 as DBMS API.

5.1 Storage Schemes

Four storage schemes are presented here. For each scheme (except the multi-version scheme), there are
two potential implementations: 1) a multi-scale geometry may be stored in a BLOB object as a single
entity or alternatively 2) a large geometry may be divided into several segments represented by a user
defined "opaque" type in Informix and each segment may be stored directly in a database row (record).

5.1.1 Multi-Version scheme (MV)

This scheme stores a complete representation for each scale interval sii in a scale range sr = {sii|i = 1,
n}. Basically this scheme is for datasets generated on the basis of key-space decompositions as too
many versions would have to be stored for a dataset with object-space decomposition. For example, the
polyline in Fig. 3 has 31 different tolerance values and therefore under the MV scheme 31 versions
have to be stored in order to support all these values.

5.1.2 Sequence number based schemes(SN)

Under this scheme, an explicit sequence number is assigned to each vertex to label its position in the
original vertex sequence in the geometry. In a BLOB object, all vertices in a geometric object are
stored according to their tolerance/scale value in a descending (in case of tolerance) order. There may
be an index which includes some or all the tolerance/scale values stored in front of the vertex data
section. For the segment based method, the above sorted vertex sequence is divided into several blocks
according to a maximum size for blocks (number of vertices, etc.) and labelled with the largest
tolerance value of vertices in the block.

When vertices are retrieved, they are sorted by their sequence number to restore the correct vertex
order in the original sequence. This scheme may be suitable to both the key-space decomposed and
object-space decomposed datasets.

5.1.3 MS-Tree based schemes(MS)

This scheme is primarily for key-space decomposed datasets. All vertices from the same scale/tolerance
interval and between two vertices at a larger tolerance interval form a vertex group. The order of

13

vertices is maintained by references between a vertex and the two vertex groups in front of and behind
it and at smaller tolerance intervals. For example, given a tolerance range {[0, 1), [1, 5), [5. 10), [10,
20),[20, ∞)}, the object in Fig. 3 will form the following MS-Tree (Fig. 9):

In a BLOB object, these vertex groups will be stored in a descending order of the maximum group
tolerance value. References to child groups are physical offset values of the group in the BLOB object.
For an segment based implementation, several groups at the same level may be stored into a single
vertex block. Therefore, references will also include information on a group’s position inside the block
(in our implementation, we stored references in child groups so the position of the parent vertex in its
group should also be stored).

If the MS-Tree is used to store object-space decomposed datasets, the structure of the tree will
normally be very similar to a persistent BVT-tree introduced below.

5.1.4 Persistent BVT-tree (BVT)

Under this scheme, vertices of a geometry are sorted in descending order according to their tolerance
value and then stored in a BLOB object. References to child nodes are physical offset values of the
child nodes in the BLOB object. For the segment based implementation, a BVT-tree may be divided
into several sub-trees of a specified maximum height (e.g. for a height of 2, a sub-tree has a maximum
3 nodes) and each sub-tree is stored as a vertex block. The regular nature of a binary tree means it is
easier to map the position of a node at the bottom level of a sub-tree to its child sub-trees.

5.2 Results

Due to the limited space, only some observations made on our experiment results are shown here.
Some detailed results on MV and SN schemes can be found in [2].

The MV scheme, understandably, provides a slightly better performance in data retrieval and object
reconstruction. However, we observed severe storage overhead when handling real datasets (Fig. 10).

BLOB based MS-Tree and BVT-Tree schemes have a slightly better performance in comparison to
then SN scheme when object size is relatively large (which means it takes longer to sort vertices on
their sequence numbers under the SN schemes). For opaque-type implementation, the SN scheme
outperforms other alternatives. In addition, the opaque-type segment implementation seems to be faster
than BLOB based implementation as it is an expensive operation to open and access BLOB objects. In
summary, we believe an implementation which combines all available schemes when appropriate may
achieve best overall performance.

6. Future work

An important issue not thoroughly discussed in this paper is intra-object and inter-object conflict
detection and resolution when a multi-scale dataset is generated or a query result is presented. We
proposed an information-rich architecture for a multi-scale spatial database which allows multiple
objects occupying the same location at a given scale but we have not discussed the issue of designing
priority systems for multiple properties which depend on specific map specifications or geo-referenced

1 29 41 20+

10-207 12 15 19

32 38 5-10

3 1-58

2 0-1

4 5 6

9 10 11

13 14

16 18

17

20 21 23

22

24 25 26 27 28

30 31

34 37

33 35 36

40

39

42 43

231.8

14.12

5.31

0.78

0.48

3.63

1.29

2.81
3.11

0.8

2.57

0.580.27

Fig. 9: The MS-Tree of the object in Fig. 3

14

data classification systems. At present, our plan is to use multi-agent based methods along with
triangulation methods to tackle these problems.

Biographical Sketch

S. Zhou has mainly worked on developing methods to generate multi-scale dataset in a DBMS-centred
environment.

C.B. Jones has worked on several aspects of map generalisation with a focus on a) triangulations to
support topologically consistent implementation of operators such as amalgamation, collapse, line
simplification and displacement; b) graphical conflict resolution applying iterative improvement
procedures such as simulated annealing and c)multi-agent systems for interactive maps.

Bibliography

1. Guting, R.H., An introduction to spatial database systems. VLDB Journal, 1994, 3(4), p. 357-
399.

2. Zhou, S. and C.B. Jones, Design and implementation of Multi-Scale Databases. in SSTD’01, to
appear, Los Angles.

3. Puppo, E. and G. Dettori, Towards a formal model for multiresolution spatial maps, in
Advances in Spatial Databases, M.J. Egenhofer and J.R. Herring, Editors. 1995, Springer-
Verlag, p. 152-169.

4. Becker, B., H.-W. Six, and P. Widmayer, Spatial priority search: an access technique for
scaleless maps. ACM SIGMOD Record, 1991, 20(2), p. 128-137.

5. Jones, C.B. and I.M. Abraham, Design considerations for a scale-independent database. in
Second International Symposium on Spatial Data Handling. 1986, Seattle, International
Geographical Union, 384-398.

6. van Oosterom, P., Reactive Data Structures for Geographic Information Systems. 1993,
Oxford: Oxford University Press.

Fig. 10 A real dataset (1:5000) used in experiments (smaller rectangles are query windows used)

15

7. Worboys, M.F., A generic model for planar geographical objects. International Journal of
Geographical Information Systems, 1992, 6(5), p. 353-372.

8. Egenhofer, M.J., E. Clementini, and P.Di Felice, Topological relations between regions with
holes. International Journal of Geographical Information Systems, 1994, 8(2), p. 129-142.

9. Open GIS Consortium, OpenGIS Simple Features Specification, 1998, Open GIS Consortium
(OGC).

10. Shaffer, C.A., A Practical Introduction to Data Structures and Algorithm Analysis. 1997:
Prentice Hall.

11. Cromley, R.G., Hierarchical Methods of Line Simplificatoin. Cartography and Geographic
Information Systems, 1991, 18(2), p. 125-131.

12. Gunther, O., Efficient Structures for Geometric Data Management. Lecture Notes in
Computer Science. Vol. 337. 1988: Springer-Verlag.

13. Ware, J.M. and C.B. Jones, Conflict Reduction in Map Generalisation Using Iterative
Improvement. Geoinformatica, 1998, 2(4), p. 383-407.

14. Harrie, L.E., The Constraint Method for Solving Spatial Conflicts in Cartographic
Generalization. Cartography and Geographic Information Science, 1999, 26(1), p. 55-69.

15. Ware, J.M., C.B. Jones, and N. Thomas, Map Generalisation, Object Displacement and
Simulated Annealing: Two Techniques for Executiion Time Improvement. in Proceedings of
the GIS Research UK 9th Conference GISRUK 2001. 2001. Wales, UK: University of
Glamorgan.

16. Harrie, L. and T. Sarjakoski, Simultaneous Graphic Generalisation of Vector Data Sets.
GeoInformatica, Submitted.

