Smooth Generalization for Continuous Zooming

Marc van Kreveld
Institute of Information and Computing Sciences
Utrecht University
Cartographic generalization

- Making changes that are necessary when changing the map scale
simplification
elimination
point conversion (symbolization)
aggregation (of polygons)
The means: operators

- Selection/elimination
- Displacement
- Shape change
- Aggregation
- Dissolution
- Reclassification

- Typification
 - Exaggeration
 - Point, line, area conversion

Deciduous, coniferous \rightarrow forest

County borders \rightarrow state borders
Operators: more examples

Partial line conversion

Exaggeration (enlargement)

Point-to-area conversion
Smooth changes during scale change

When zooming out, generalization changes should be done ‘visually smooth’

- Looks more pleasing
- Helps to keep reference

Windows 98 and Office 2000 have it too, in smoothly appearing pull-down menus
Building example
Polyline example

• Changing a polyline to its generalization
• Usually: simplification
 Sometimes: typification, exaggeration
• Smooth change: morphing
Some intermediate stages
Generalization

Standard generalization:
- From a detailed feature and a desired map scale, compute a less detailed visualization

Smooth generalization:
- From a detailed feature and its generalization, compute a smooth transition to visualize it for any intermediate map scale
Visually smooth changes, I

- Morphing a 1-dim feature or boundary
 e.g., line simplification
Visually smooth changes, II

• Rotating a feature
e.g., for alignment to precede building aggregation
Visually smooth changes, III

• Moving a feature
 displacement, to solve coalescence
Visually smooth changes, IV

- Fading a feature into the background
 elimination, or dissolution in a subdivision
Visually smooth changes, V

- Appearing of a feature
e.g., for area conversion

factories

industrial area
Visually smooth changes

- Moving
- Rotating
- Morphing

Geometry change

- Fading
- Appearing

Color change

Which generalization operator can be implemented with what smooth change, and how?
Related work

• Generalization & morphing literature

• Animation in cartography (non-temporal animation)
 [Kraak, MacEahren]

• Dynamic, or on-the-fly generalization
 [Mackaness & Glover, van Oosterom]
Multiple representations

(a) (b) (c) (d)

(after Mackaness & Glover, 1999)
Some operators & smooth versions

- Elimination: fade or shrink (=morph)
- Displacement: move
- Aggregation: morph or appear
Some operators

• Dissolution: fade disappearing area, or grow (=morph) adjacent areas
• Classification: change colors to new color classes (=fade/appear); fade not needed boundaries
Many options: typification

- Fade 7 houses; let 5 appear
- Move 7 houses to the positions of 5
- Move 5 of 7 houses to new position; let 2 fade
- Same, but let 2 shrink to a point and vanish
- Shrink 7 houses; let 5 appear
Stationary and transitional maps

- **Stationary map**: ‘normal’, not changing map
- ‘Usual’ requirements

- **Transitional map**: map that is undergoing changes (even if the user does nothing)
- Requirements???

E.g., partially faded features must be allowed on transitional maps. Also some amount of congestion, coalescence?
User interaction

• What if the user stops zooming half-way a smooth change?

Cannot allow partially faded features when the transitional map becomes stationary….
Nearest stationary representation

- Idea: keep changing to a situation that is allowed on a stationary map: continue, or undo
Scale, generalization, and rate of change

Degree of generalization

Scale (decreasing)

double rate of change

Valid stationary points

Valid stationary positions
Implementing smooth changes

• Moving, rotating: easy (?)
• Morphing
• Fading, appearing: in raster or vector, easy (?)

Need: simple methods that usually work well (only for temporary, on-line maps)
Easy morphing
Easy morphing
Summary

• Continuous zooming requires smooth generalization: computation of a sequence of representations for any map scale
• Five types of smooth change: move, morph, fade, …
• Smooth change implies that the ideal generalization may not appear on a stationary map
• Changes must continue after zooming stops
• Smooth change should be implemented with simple means (temporary maps, quick-and-dirty)
Further work

• Implement and analyze visual appearance of smooth change
• Develop requirements for transitional maps
• Study smooth versions of the operators
• Analyze and solve the difficulties when several smooth changes take place simultaneously