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Motivation: Finding Object Groups in Spatial Data
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Motivation: Finding Object Groups in Spatial Data

� Equal Objects

� Equal Spatial Distribution

� Equal Distribution of Mixed 
Object Types
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Clustering Methods

ClusteringClustering

PartitioningPartitioningHierarchicalHierarchical

AgglomerativeAgglomerative DivisiveDivisive Single PassSingle Pass ReallocationReallocation CliqueClique

Top-down

WardWard Complete LinkageComplete Linkage Average LinkageAverage Linkage Single LinkageSingle Linkage

Bottom-up
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Cluster Shapes
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Graphbased Clustering I

� Powerful methods for clustering in difficult problems, 

[Jaromczyk und Toussaint, 1992].

– Any cluster shape (convex, non convex).

– Best agreement with human performance.

� Simple basic idea

– Remove / Insert edges from / To a graph by a given criteria.

– The resulting forest is the clustering

� Example

– Shared Near Neighbours Method [Jarvis, 1973]
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Graphbased Clustering II
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Proximity Graphs

� Nearest Neighbourhood Graph (NNG)

� K-Nearest Neighbourhood Graph (k-NNG)

� Minimum Spanning Tree (MST)

� Relative Neighbourhood Graph (RNG)

� Gabriel Graph (GG)

� Delaunay Triangulation (DT)

� Sphere of Influence Graph (SIG)
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Neighbourhood Hierarchy

Point set NNG

Local

MST RNG GG DT

Global
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K-Nearest Neighbourhood Hierarchy

Point set

NNG 2-NNG 3-NNG 4-NNG 5-NNG
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Cluster Definition

Inner Edge

Outer Edge

Cluster



12Workshop Paris - 28.04.03

Clustering Rules

� Density Compatibility

� Distance Compatibility

� Variance Compatibility

� Higher Density / Higher Priority

� Lower Variance / Higher Priority

� Median based Outlier 

removal
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Algorithm

Clustering
Computation 
of the graphs

NNG

RNG

GG

DT

Outer edges

Inner edges
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Example: Artificial Point Set
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Example: Point Set with Noise
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Example: Settlement Structure 

NNG NNG-RNG NNG-GG NNG-DTNNG-MST
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Number of Detected Clusters
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Example: 3D Range Data

Special
Curvature
Based 
Seg-
mentation

Iteration
No
Iteration
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Example: Greyscale Image
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Conclusion

� Proximity graphs are well suited to find spatial object cluster.

� They provide a natural hierarchical neighbourhood  (similarity) 
model.

� A more detailed approach should use a connected component 

analysis.

� The Delaunay Triangulation is only usefull for 2 or 3 

dimensional feature spaces. 

� The k-Nearest Neighbour Hierarchy should be used for high 
dimensional feature spaces .

– Disadvantage: Introduction of the parameter k


