Mesh Simplification for Building Typification

Dirk Burghardt and Alessandro Cecconi

ICA Generalization Workshop, Paris, 28-30 April 2003

Outline

- 1. Background and context
- 2. Mesh simplification
 - a) Theory of mesh optimization
 - b) Mesh simplification adapted for typification
 - c) Shape construction
- 3. Control parameter
 - a) Control of building density
 - b) Semantic control
- 4. Limitations and possible improvements

Background and context

Task: generate map of intermediate scale with help of multiscale databaseGiven: two layer / level of detail (scale 1:25'000 and 1:200'000)Fokus: typification of buildings

Background and context

Publications:

Regnauld, N. (1996): Recognition of Building Clusters for Generalization.

Sester, M. and Brenner (2000): Typification Based on Kohonen Feature Nets.

0	0	•	•• •	a	.00	0'	0 0	G	0 0	0
	•	0		<u>.</u>		•	0	•	0	0
	0	Θ	0	σ	o O	đ	ò	ò	0	0
		•	•	•	•	•	•	•		
		0		Q				0		0
		Θ		ð		ò		۲		0
		•	0	o.	ं०	o'	ò	o	0	0

Sester, M. and Brenner (2000): Typification Based on Kohonen Feature Nets.

Kohonen Feature Maps

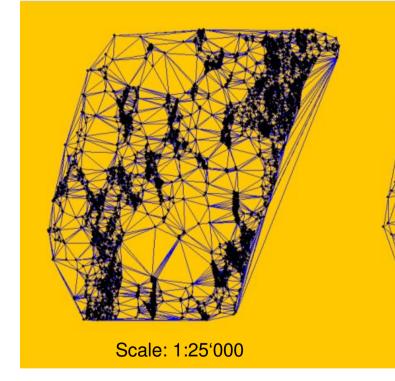
- based on learning techniques with neuronal nets
- neurons are adapted to new situtation, while keeping their spatial ordering
- good results

0	٥	0	•• •	Q	.00	0.	0 0	0	0 0	0
				•						
				0		0		0		0
	0	0	ò			•	۲	•	0	
	0	Θ	Ð	σ	ğ	đ	i	ò	0	0
	•	•	•	•	•	•	•	•	_	
		0		0		0		o		0
		Θ		0		ò		۲		0
	0	•	·0	o	· 0	0'	6	ò	0	0
		0				•				-

Sester, M. and Brenner (2000): Typification Based on Kohonen Feature Nets.

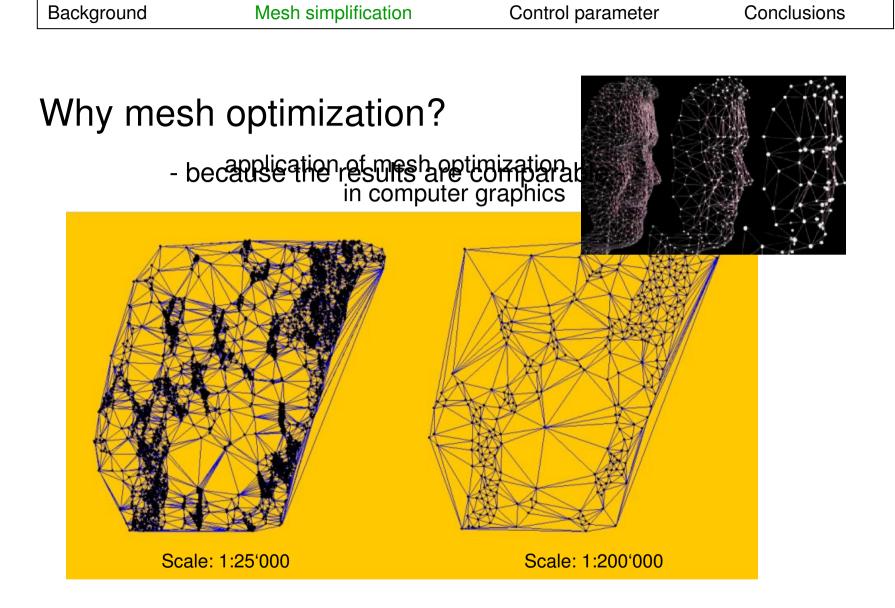
Kohonen Feature Maps

- approach is non deterministic as a result of random selection of neurons at the beginning → after rerun different results will be achieved
- goal: looking for an algorithm, which creates reproducible results


0	٥	0	•• •	Q.	.0 0	0.	Ð	0	G	0 0	0
	0			o		0		•	0	0	0
		Ο	0		0	•		٥	•		
	0	Θ	0	đ	e e	đ		ò	ò	0	0
	•	•	•	•	•	•		•	÷		Ŭ
		۲		0		0			0		0
		0		0		ò			۲		0
1	0	•	·0	o	· •	0'		ò	ò	0	0
		Θ				•					_

Sester, M. and Brenner (2000): Typification Based on Kohonen Feature Nets.

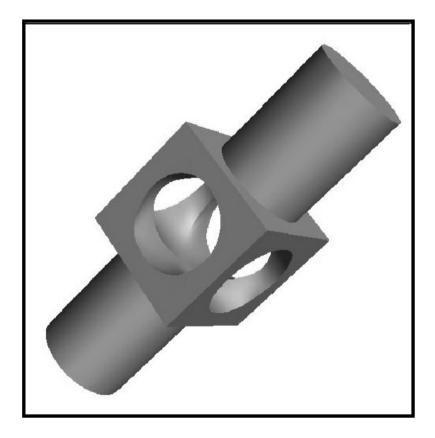
application of mesh optimization in computer graphics



Analogy

becomes obvious after triangulation of center of gravity for buildings in different scales

Scale: 1:200'000


University of Zurich

ICA Generalization Workshop, Paris, 28-30 April 2003

Mesh Optimization

Method for automated reconstruction of 3D objects with optimal triangulation nets

- surface reconstruction
- mesh optimization
- smoothing

Mesh Optimization

Objective: Simplification of triangulation, through selection with use of energy function and not with random delete of edges and nodes

$$E = E_{dist} + E_{rep} + E_{spring}$$

$$E_{dist}(K,V) = \sum_{i} d^{2}(\mathbf{x}_{i}, \phi_{V}(|K|))$$
mit $d^{2}(\mathbf{x}_{i}^{i}, \phi_{V}(|K|)) = \min_{i} \|\mathbf{x}_{i} - \pi_{V}(\mathbf{b}_{i})\|^{2}$

describes the distance of the meshes from the scaned 3D original points

Objective: Simplification of triangulation, through selection with use of energy function and not with random delete of edges and nodes

$$E = E_{dist} + E_{rep} + E_{spring}$$

$$E_{dist}(K,V) = \sum d^{2}(\mathbf{x}_{i},\phi_{V}(|K|)) \xrightarrow{} E_{node}(V) = \sum d^{2}(\mathbf{x}_{i}^{orig},\mathbf{x}^{rep})$$

$$mit \quad d^{2}(\mathbf{x}_{i}^{i},\phi_{V}(|K|)) = \min_{\mathbf{b}_{i} \in |K|} \|\mathbf{x}_{i} - \pi_{V}(\mathbf{b}_{i})\|^{2} \qquad mit \quad d^{2} = \sum_{i=1}^{i} \min_{j} \|\mathbf{x}_{i}^{orig} - \mathbf{x}_{j}^{rep}\|^{2}$$

describes distance of representatives from the original nodes

Objective: Simplification of triangulation, through selection with use of energy function and not with random delete of edges and nodes

$$E = E_{dist} + E_{rep} + E_{spring}$$

$$E_{dist}(K,V) = \sum d^{2}(\mathbf{x}_{i}, \phi_{V}(|K|)) \xrightarrow{} E_{node}(V) = \sum d^{2}(\mathbf{x}_{i}^{orig}, \mathbf{x}^{rep})$$

$$mit \quad d^{2}(\mathbf{x}_{i}^{i}, \phi_{V}(|K|)) = \min_{\mathbf{b}_{i} \in |K|} \|\mathbf{x}_{i} - \pi_{V}(\mathbf{b}_{i})\|^{2} \qquad mit \quad d^{2} = \sum_{i=j}^{i} \min_{i=j} \|\mathbf{x}_{i}^{orig} - \mathbf{x}_{j}^{rep}\|^{2}$$

$$E_{rep}(K) = c_{rep}m \qquad reduction of point number \qquad \textcircled{O}$$

Objective: Simplification of triangulation, through selection with use of energy function and not with random delete of edges and nodes

$$\begin{split} E = E_{dist} + E_{rep} + E_{spring} \\ E_{dist}(K,V) = \sum d^{2}(\mathbf{x}_{i}, \phi_{V}(|K|)) & \longrightarrow \\ \text{mit} \quad d^{2}(\mathbf{x}_{i}^{i}, \phi_{V}(|K|)) = \min_{\mathbf{b}_{i} \in |K|} \|\mathbf{x}_{i} - \pi_{V}(\mathbf{b}_{i})\|^{2} \\ \text{mit} \quad d^{2} = \sum_{i}^{i} \min_{j} \|\mathbf{x}_{i}^{orig} - \mathbf{x}_{j}^{rep}\|^{2} \\ E_{rep}(K) = c_{rep}m \\ \text{reduction of point number} \quad \textcircled{C} \\ E_{spring}(K,V) = \sum_{\{j,k\} \in K} k \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} \\ \text{keeps the length of delaunay edges} \end{split}$$

Objective: Simplification of triangulation, through selection with use of energy function and not with random delete of edges and nodes

$$E = E_{dist} + E_{rep} + E_{spring} \longrightarrow E = E_{node} + E_{rep}$$

$$E_{dist}(K,V) = \sum d^{2}(\mathbf{x}_{i}\phi_{V}(|K|)) \longrightarrow E_{node}(V) = \sum d^{2}(\mathbf{x}_{i}^{orig}, \mathbf{x}^{rep})$$

$$mit \quad d^{2}(\mathbf{x}_{i}^{i},\phi_{V}(|K|)) = \min_{\mathbf{b}_{i}\in|K|} \|\mathbf{x}_{i} - \pi_{V}(\mathbf{b}_{i})\|^{2} \qquad mit \quad d^{2} = \sum_{i}^{i} \min_{i} \|\mathbf{x}_{i}^{orig} - \mathbf{x}_{j}^{rep}\|^{2}$$

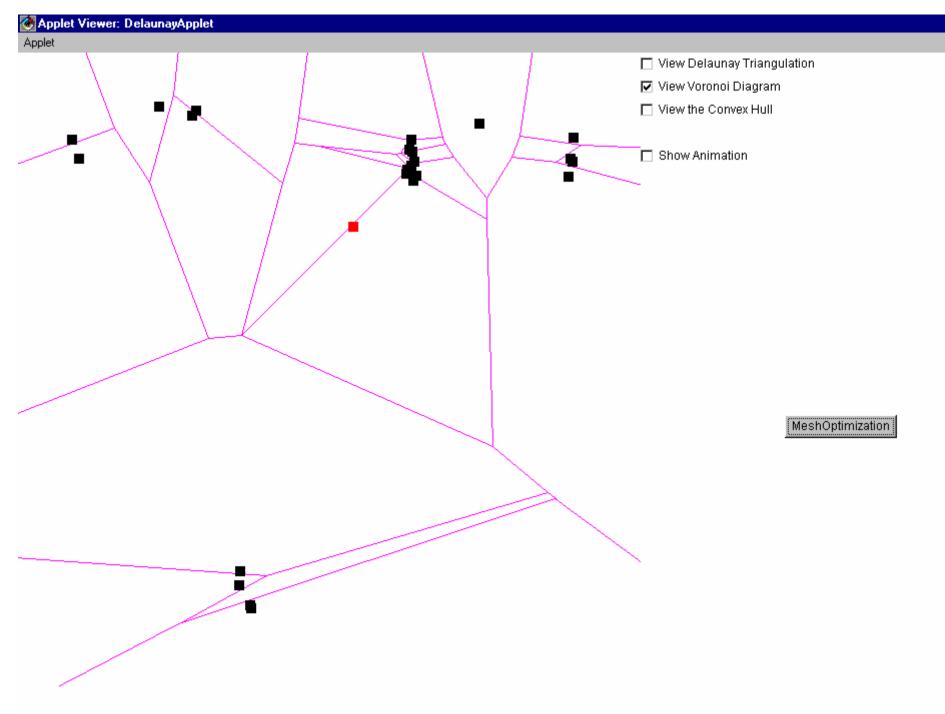
$$E_{rep}(K) = c_{rep}m \qquad reduction of point number \qquad \bigcirc$$

$$E_{spring}(K,V) = \sum_{\{j,k\}\in K} k \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} \longrightarrow E_{edge} = \frac{1}{2} \alpha \sum_{edge(DT)} (\Delta l^{akt})^{2}$$

Typification

- External loop looked for the representatives, which could be removed with the smallest energy increase
- Internal loop optimize the position of remaining representatives for the given energy function with help of QR decomposition

$$\left\|\mathbf{M}\cdot\mathbf{x}^{1}-\mathbf{d}^{1}\right\|^{2}$$


 $\mathbf{M}-\text{design}$ matrix, derived from energy terms

(n+e,m)(m,1) (n+e,1)

x – vector of representatives

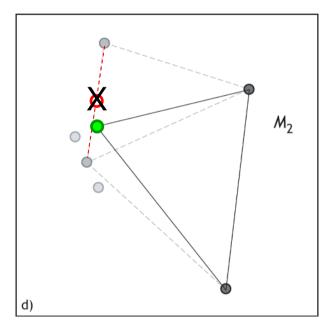
d - vector of original objects (center of gravity)

Conclusion of pre-project

Advantages

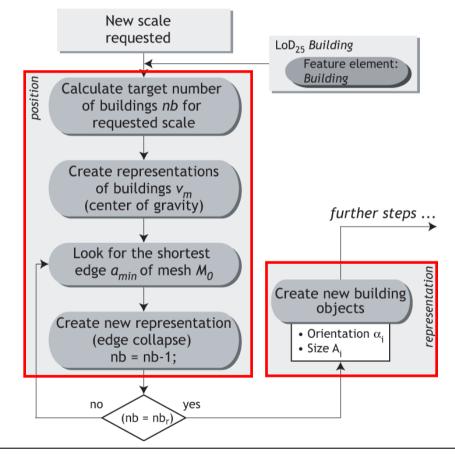
- mesh optimization technique could be used for typification
- open to include additional constraints

Disadvantages


- approach depends n^2 from the number of objects
 - \rightarrow slow if number of objects more then 20-30 !

Alternative – mesh simplification

- faster geometric solution
 mesh simplification
- Iteration:


 look for shortest edge
 between representatives
 and delete edge
 (replace two
 representatives with one)

• determine center of gravity from all objects where the representatives stands for

Building typification process

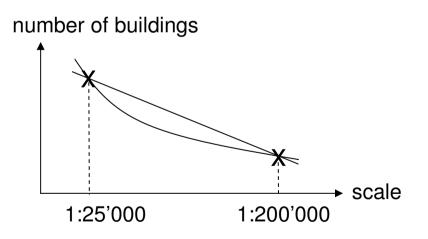
two step process -

1. Positioning:

Determining the *number* and the *position* of the new objects with respect to the requested scale

2. Representation:

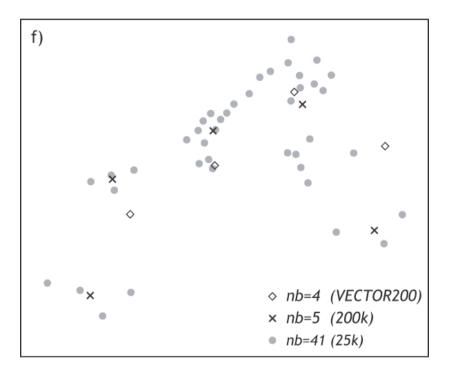
Creation of a new building objects with calculation of *size* and *orientation*


University of Zurich

1. Positioning

a) Determine number of objects

- use Töpfer's radical law (Töpfer and Pillewizer 1966)
- keep the "black-white" ratio between buildings and background constant for all scales
- calculate interpolation function (linear, root) from number of buildings at the two scales (1:25'000 and 1:200'000)


$$n_{build}^{dest} = n_{build}^{25} \sqrt{\frac{m_{25}}{m_{dest}}}$$

1. Positioning

b) Determine position with mesh simplification

2. Representation

a) Calculation of area

- simple shape presentation with rectangles
- size of areas is computed out of the average of the pertaining buildings at scale 1:25'000
- a scaling factor f_{area} is used to consider additionally the size of buildings at scale 1:200'000

$$\overline{A_{n}} = \frac{\sum_{k} A_{k}}{n_{dest}} \cdot f_{area} = \frac{\sum_{k} A_{k}}{n_{dest}} \cdot \underbrace{\frac{m_{dest}^{2}}{m_{25}^{2}} \cdot \left(1.0 - \Psi \cdot \frac{m_{dest} - m_{25}}{m_{200} - m_{25}}\right)}_{f_{area}}$$

$$\Psi = 1.0 - \frac{m_{25}^{2}}{m_{200}^{2}} \cdot \frac{\overline{A_{LOD_{200}}}}{\overline{A_{n}}}$$

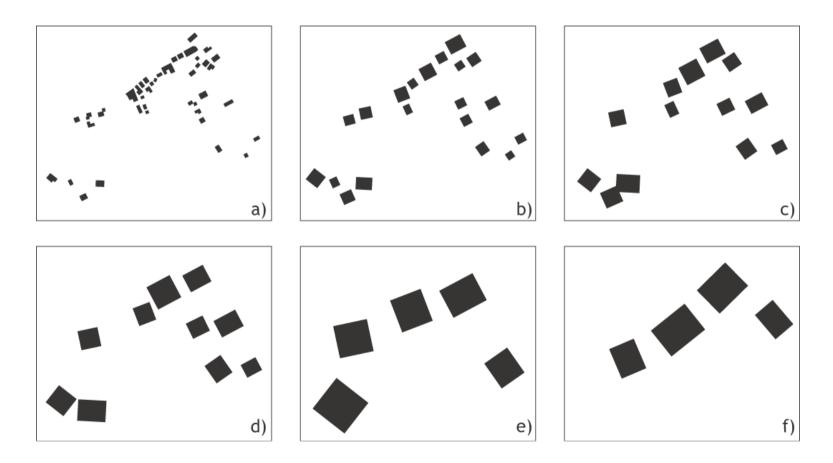
University of Zurich

ICA Generalization Workshop, Paris, 28-30 April 2003

2. Representation

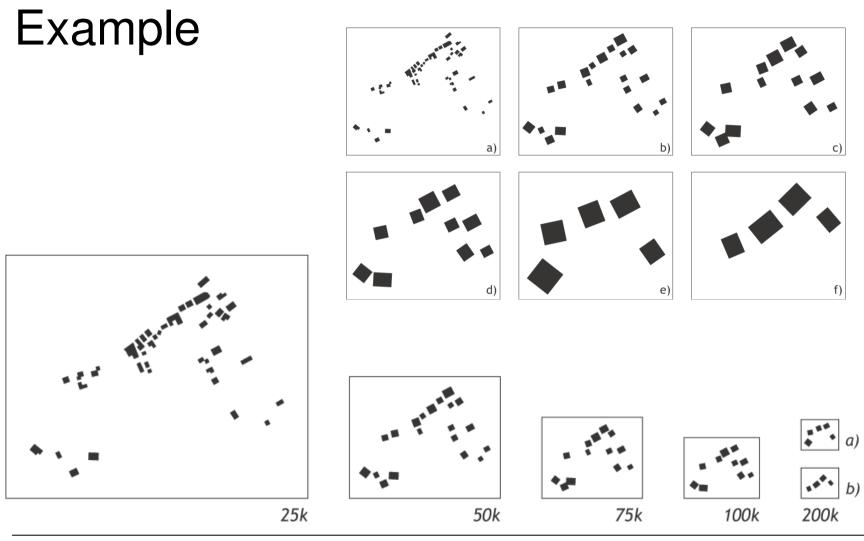
a) Calculation of area

- simple shape presentation with rectangles
- size of areas is computed out of the average of the pertaining buildings at scale 1:25'000
- a scaling factor f_{area} is used to consider additionally the size of buildings at scale 1:200'000


b) Orientation α

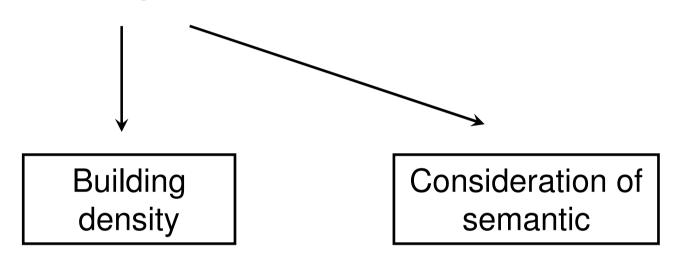
- orientation α of the new building is taken from the largest object of the group

Background	Mesh simplification	Control parameter	Conclusions


Example

ICA Generalization Workshop, Paris, 28-30 April 2003

	Background	Mesh simplification	Control parameter	Conclusions
--	------------	---------------------	-------------------	-------------



University of Zurich

ICA Generalization Workshop, Paris, 28-30 April 2003

Control parameter

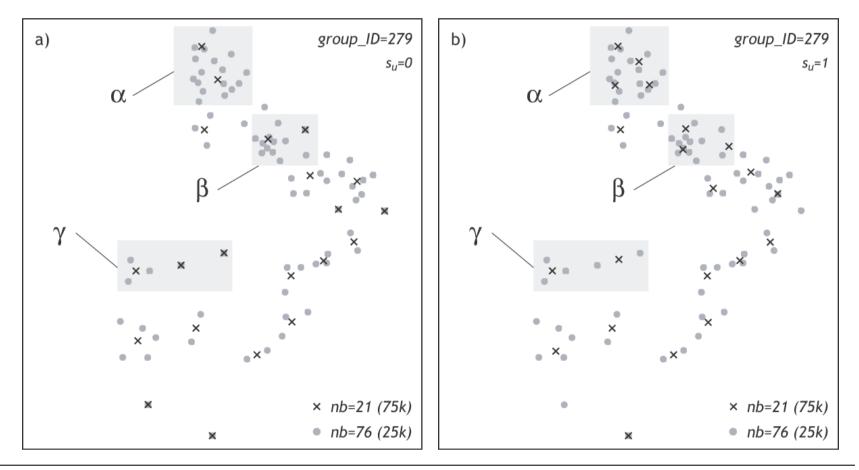
Control parameter – building density

- areas with high building density would be thinned out more strongly than sparsely populated regions – because approach is based on looking for the shortest distance
- correction factor allows to elongate the real edge length a between the vertices – decrease the thinning process in densely populated areas

Control parameter

$$a_{min} = \min a$$
, where $a = f_a \cdot \sqrt{(x_s - x_t)^2 + (y_s - y_t)^2}$

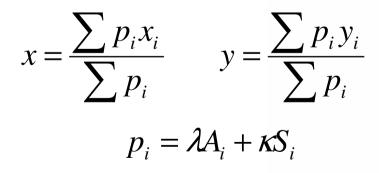
$$f_a = s_u \cdot (r-1) + 1$$

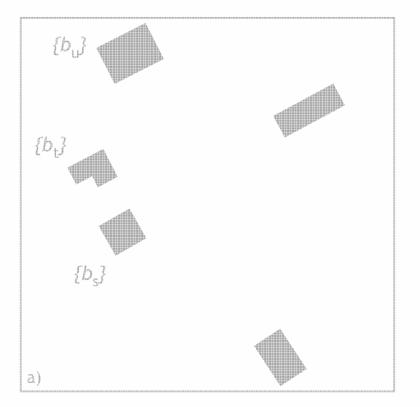

r - number of objects that a placeholder stands for

 $0 \le s_u \le 1$ set by user

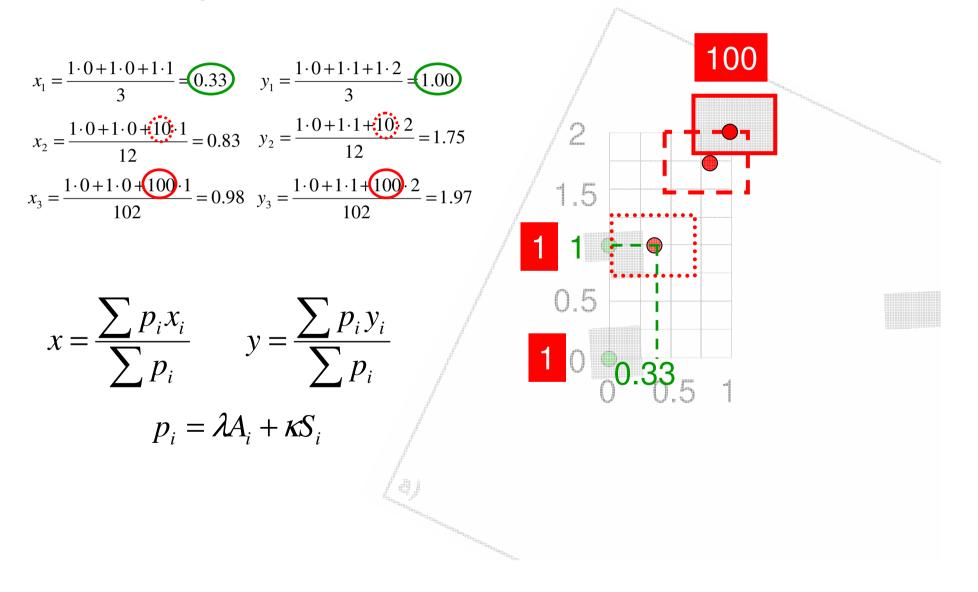
- $s_{\mu} = 0.0$ no correction is done
- $s_{\mu} = 1.0$ correction by means of the original number of represented objects

Control parameter


University of Zurich

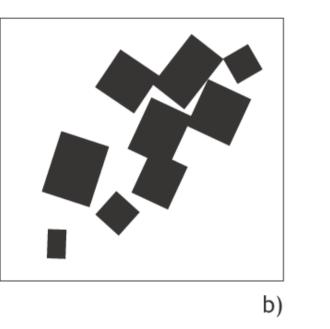

ICA Generalization Workshop, Paris, 28-30 April 2003

Control parameter – semantic *S*, size *A*


during positioning of the placeholder the size of areas (*A*) and the semantic of objects (*S*) not considered

Idea: use weighted points

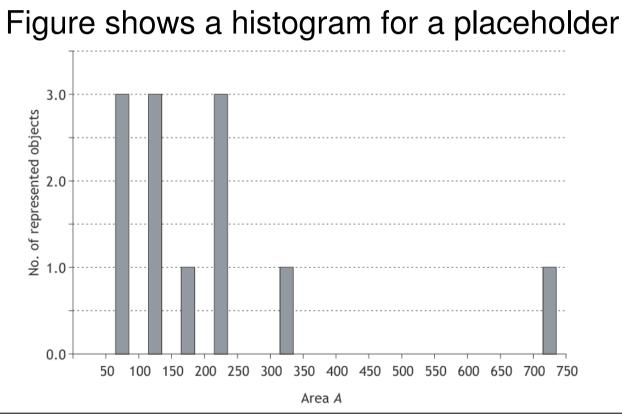
Control parameter – semantic *S*, size *A*


- mesh simplification technique fails to maintain alignments of buildings
- during positioning of the placeholder the size of areas and their semantic not considered
- the minimum distances are taken into account only indirectly with considering two scales

- such patterns could be preserved by introducing additional energy term to the method
- with weighted points a concept for a solution is suggested
- include additional constraint or solve the problem with following operation (shrinking, displacement)

Figures show an example of overlaps created by excessive building sizes

C


a)

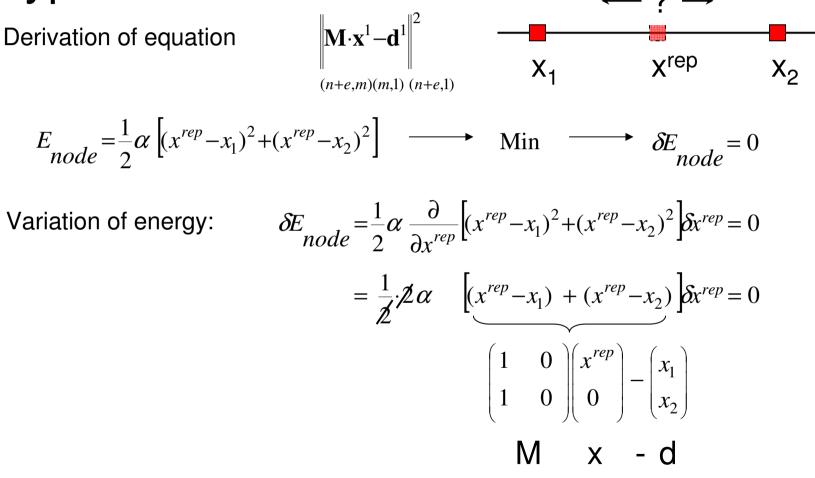
- mesh simplification technique fails to maintain alignments of buildings
- during positioning of the placeholder the size of areas and their semantic not considered
- the minimum distances are taken into account only indirectly with considering two scales
- if a placeholder represents buildings with extremely different sizes the average size is displayed

- such patterns could be preserved by introducing additional energy term to the method
- with weighted points a concept for a solution is suggested
- include additional constraint or solve the problem with following operation (shrinking, displacement)
- a statistical evaluation of the represented building objects could be accomplished

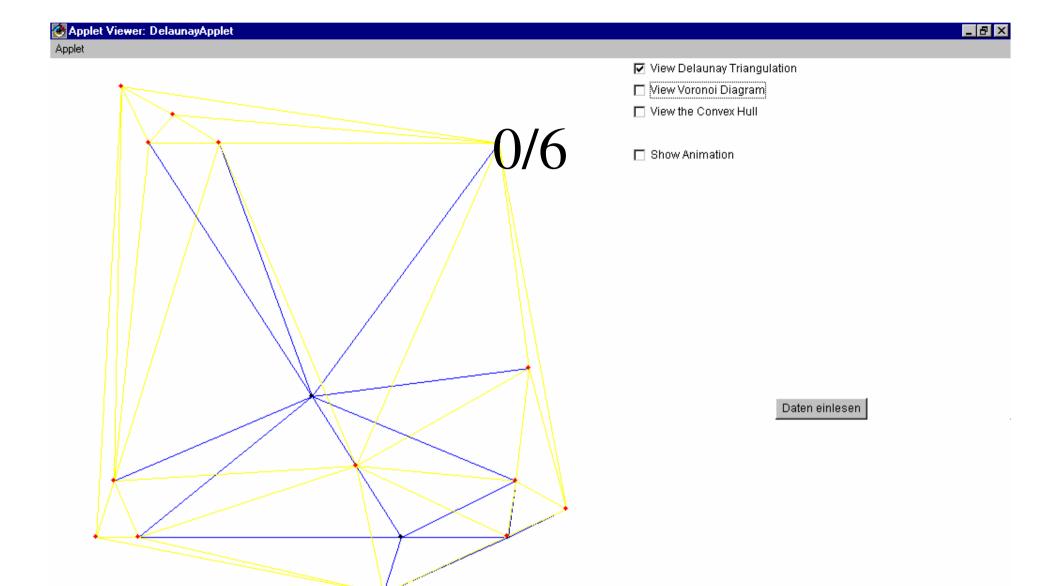
University of Zurich

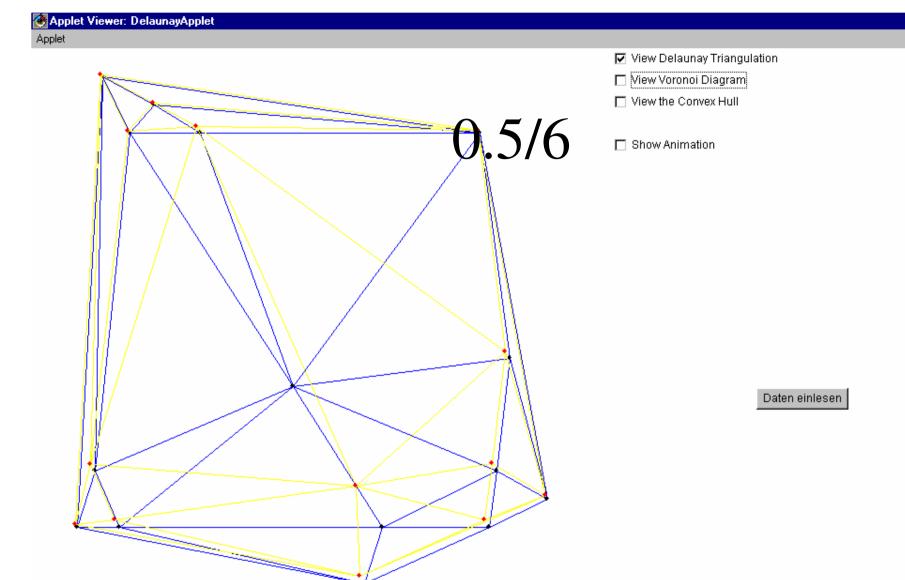
ICA Generalization Workshop, Paris, 28-30 April 2003

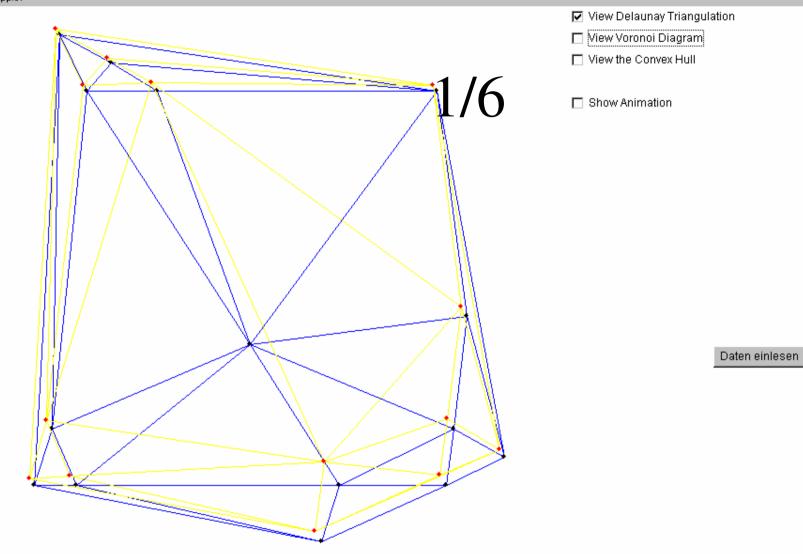
University of Zurich


Department of Geography

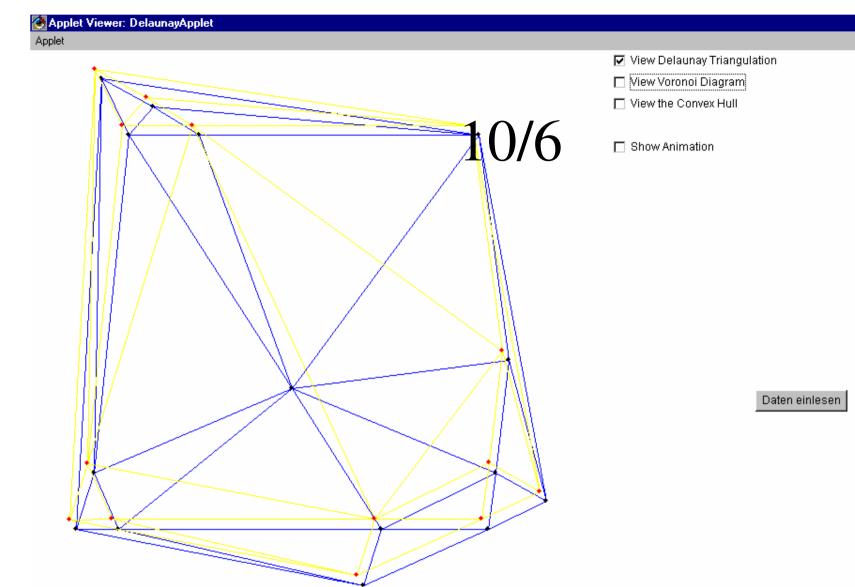
Dr. Dirk Burghardt Tel.: +41 1 63 56534


burg@geo.unizh.ch


Typification

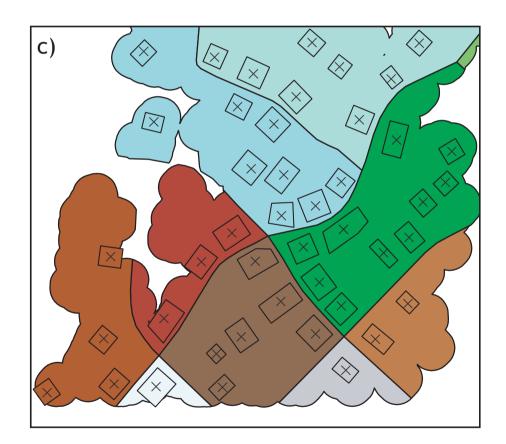


Click to add point; SHIFT-click to delete point; Drag to move point.



_ 8 ×

Click to add point; SHIFT-click to delete point; Drag to move point.


Click to add point; SHIFT-click to delete point; Drag to move point.

Click!

Click to add point; SHIFT-click to delete point; Drag to move point.

🔀 Start	🔄 Team mee	🔍 Exploring	🛞 Workbench	💇 Grobplanu	🔯 Debugger	G Microsoft	Maschen	🖪 Console	Applet	📢 🗇 🎮 🕼 🛄 🗖 11:13 AM
---------	------------	-------------	-------------	-------------	------------	-------------	---------	-----------	--------	----------------------

ICA Generalization Workshop, Paris, 28-30 April 2003