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ABSTRACT: 
 
Three dimensional (3D) city models are often visualized using a Level of Detail (LOD) representation. For the automatic generation 
of coarser representations from detailed 3D building models, i.e., generalization, an approach is introduced which uses the formally 
well defined theory of scale-spaces, including mathematical morphology and curvature-space. A number of examples shows the 
potential of the approach. Because buildings are perceived to mainly consist of orthogonal structures and as our previous 
investigations have shown that generalization based on scale-spaces works best for those, the focus of this paper lies on the squaring 
of non-orthogonal structures. Results for the automatic elimination of inclined roof-structures for a coarse model are given while the 
squaring of walls is still under investigation. 
 
 

 
1 INTRODUCTION 

In order to enhance the performance of an interactive 
visualization of three dimensional (3D) polyhedral data, the 
number of polygons to be rendered has to be minimized. This is 
achieved by a Level of Detail (LOD) representation, where 
objects that are far away are shown with less detail (cf. Fig. 1).  

 
Figure 1. Different Levels of Detail (LOD) of a building 

automatically generated by scale-space based generalization 
 

The derivation of a coarser representation from a fine-scale 3D 
model is termed 3D generalization. In this paper the focus lies 
on the generalization of 3D building models. In computer 
graphics and computational geometry many approaches for 
automatic polygon-reduction exist, but most of them are 
developed for general objects and therefore do not consider 
building specific properties, e.g., right angles. A good survey on 
approaches for surface simplification is presented by (Heckbert 
and Garland 1997). Examples for automatic LOD generation are 
given by (Varshney et al. 1995) and (Schmalstieg 1996). The 
approach most relevant to the work presented in this paper is 

(Ribelles et al. 2001). It treats the problem of finding and 
removing features from polyhedra in order to coarsen computer 
aided design (CAD) models based on planar cuts. The approach 
generalizes naturally to quadric and other implicit surfaces.  
 
Approaches with a cartographical or Geographic Information 
System (GIS) background, which take into account properties of 
buildings such as right angles, but mostly focus on 2D ge-
neralization, are (Mackaness et al. 1997, Meng 1997, Stau-
fenbiel 1973, and Weibel and Jones 1998). (Sester 2000) uses 
least squares adjustment for generalization, which is suitable 
especially for squaring, aggregation, and displacement of buil-
ding ground plans. One of the rare approaches for automatic 3D 
generalization of buildings can be found in (Kada 2002). Least-
squares adjustment is combined with an elaborate set of surface 
classification and simplification operations.  
 
In Section 2 an approach for the automatic generalization of 3D 
building data using the formally well-defined scale-space theory 
is presented. It is especially suited for orthogonal structures. 
Therefore, in Section 3 means for the squaring of non-
orthogonal 3D structures are introduced. Recent results for the 
squaring of inclined roof-structures as well as first ideas 
concerning the squaring of non-orthogonal wall-structures are 
presented. The paper ends with conclusions and an outlook. 
 
 

2 SCALE-SPACE BASED GENERALIZATION  

2.1 Scale-Spaces in 2D 

That scale-space theory together with so-called scale-space 
events can be used for generalization was already shown by (Li 
1996 and Mayer 1998). In scale-space theory the scale-
parameter describes the current level of scale. A basic principle 
of scale-space theory is causality. I.e., when deriving a coarser 
object-representation from fine scale, every feature in coarse 
scale has to have a reason in fine scale. For different tasks 
different scale-spaces are suited best, depending on their 
specific characteristics. 



Linear scale-space is often used in image processing. It 
combines causality, isotropy, and homogeneity and con-
tinuously smoothes the image function (Koenderink 1984). It 
satisfies the so-called diffusion-equation for which the con-
volution with the Gaussian Kernel is the solution for an infinite 
domain. How complex the events occurring in linear scale-
space can be is demonstrated in (Kuijper and Florack 2002). 
 
A scale-space with different characteristics is mathematical 
morphology (Serra 1982). In this paper the two basic operations 
erosion and dilation and the two combined operations opening 
and closing are used, which are defined as follows:  
 
 
Dilation:  A⊕B={a+b: a ∈A, b∈B}= ∪ b∈B Ab  (1) 
Erosion:  AΘB={a: a+b ∈A, b∈B}= ∩ b∈B Ab  (2) 
Opening: A°B =(AΘB) ⊕B    (3) 
Closing:  A•B =(A⊕B) ΘB    (4) 
 
 
A is the original feature to be processed and B is called the 
structure element (Serra 1982, Su et al. 1997). By varying the 
size of a usually square or circular structure element, a scale-
space complying with the causality constraint is obtained. How 
mathematical morphology can be employed for the generali-
zation of building data is shown in (Su et al. 1997, Cámara et al. 
2000). 
 
Building data usually consists of mostly straight segments. As 
these have to be preserved, (Mayer 1998) has proposed to 
realize erosion and dilation for vector data by shifting the 
segments of the outline inwards or outwards, respectively. In 
Figure 2 it is shown that erosion in this case results in a split 
and dilation in a merge of two big blocks. 
 

Figure 2. Mathematical morphology applied to vector data - 
split (top) for erosion; merge for dilation (bottom) 

 
The reaction-diffusion-space is obtained by adding a diffusive 
component to mathematical morphology (Kimia et al. 1995). 
The reaction part includes erosion and dilation. The diffusion 
part, also termed curvature-space, is for a small-scale-parameter 
equivalent to the linear scale-space. For a larger scale-parameter 
it diverges in a way that only parts with high curvature are 
eliminated. 
 
When transforming objects from fine scale to coarse scale, on 
one hand the information can be reduced by means of so-called 
scale-space events, where parts with too small extent are 
eliminated or gaps are filled by erosion and dilation, 

respectively (cf. Fig. 2). On the other hand, by relating the 
elimination of small parts to the elimination of object parts such 
as an annex or the closing of gaps to the merge of two building 
parts into one building, this can be interpreted as a simpli-
fication of objects, i.e., an abstraction. Exactly this capability of 
abstraction makes scale-spaces well suited for generalization. 
 
2.2 Mathematical Morphology in 3D  

The procedures described in the following were implemented 
using Visual C++ and the ACIS class library 
(www.spatial.com). In 3D dilation and erosion are realized by 
the movement of all facets of the polyhedral building in the 
directions of their normals, inwards or outwards, respectively 
(cf. Fig. 3). In ACIS this is termed offsetting. 

 

Figure 3. Split (top) and merge (bottom) for erosion and 
dilation in 3D: blue – original object; green – incremental steps; 

red – resulting object. 

In contrast to erosion and dilation, opening and closing “ reset”  
an object to its original range of size. For small objects such as 
a local protrusion, inward-moving facets can collide while 
opening the object, so the protrusion is eliminated. This and 
similar events for closing occur only in topologically local areas 
and are therefore termed internal events. External events emerge 
when topologically non-local segments of a building or arbi-
trary segments of different buildings touch or overlap while 
opening or closing (Mayer 1998). Internal and external events 
are distinguished, because they are differently hard to detect and 
to handle. 
 
2.3 Curvature-Space in 3D 

With mathematical morphology objects can be aggregated or 
split. Step- / stair-structures and inward- or outward-pointing 
boxes cannot be eliminated that way. For this task curvature-
space is used, where the facets are moved in such a manner that 
the steps and boxes are eliminated. (Mayer 1998) described this 
for the two-dimensional case by Z- and L-structures. The 3D-
structures corresponding to those are illustrated in Figure 4. 
 



 

Figure 4. Protrusions, box- and step- / stair-structures in 3D 
versus U-, L-, and Z-structures in 2D 

 
(Mayer 1998) distinguishes between discrete and continuous 
curvature-space. In discrete curvature-space only those facets 
are moved, which belong to stair- or box-structures and for 
which certain segment lengths are below a threshold. The speed 
of the movement is the same for all facets. Opposed to this, in 
continuous curvature-space all facets are moved, but with 
various distances. A good weight for the speed of the movement 
was found to be the area of the facets and the length of the 
corresponding edges.  
 
For this paper operations have been implemented in ACIS, 
which move a number of facets with the same distance and are 
in this respect related to discrete curvature-space. But as the 
decision is based on convexity and concavity (cf. below), i.e., 
there is no threshold involved, the whole operation is implicitly 
continuous. Therefore, there will be no distinction made 
between discrete and continuous curvature-space for the 
remainder of this paper. 
 
For the decision in what direction facets have to be moved, 
basic elements such as stairs / steps and outward- and inward-
going boxes have to be identified. The differentiating feature 
was found to be convexity versus concavity. The analysis is 
described in detail in (Forberg and Mayer 2002). In summary, 
concave and convex vertices are determined by extending the 
edges pointing to a vertex and checking the relation of the new 
endpoints to the object. If the endpoints of all edges belonging 
to the vertex lie inside the object, it is a fully concave vertex, if 
they all lie outside, it is a fully convex vertex (cf. Fig. 5).  
 
Depending on the combination of these vertices within a facet, 
concave and convex facets belonging to box-structures can be 
determined. If additionally also inflexion points are detected (cf. 
Fig. 6), where one extended endpoint lies outside and two lie on 
the boundary of the object, also the concave facets of stair- / 
step-structures can be found. In curvature-space concave facets 
are moved outwards and convex facets are moved inwards. The 
different types of convex and concave facets are illustrated in 
Figure 6. Results for the detection and elimination of stair- / 
step- and box-structures, which give an idea of the potential of 
the approach for the generation of a LOD representation, are 
shown in Figure 7. 
 

 

Figure 5. a) Fully convex (yellow) and fully concave (black) 
vertices, determined by computation of coedge-extension: b) all 
end points of extended edges inside �  fully concave vertex, c) 

all end points outside �  fully convex vertex 

 

Figure 6. Determination of different types of convex and 
concave facets  

 

Figure 7. Results for the detection and elimination of stair- / 
step- and box-structures (several LODs) 

 
 
 



The scale-space operations of mathematical morphology and 
curvature-space work well for orthogonal structures, but 
inclined structures, especially when the inclination is low, are 
eliminated rather slowly. For real data the angles between the 
facets often are not exactly orthogonal. Therefore, an approach 
for the squaring of structures with small deviations has to be 
developed. Moreover, even structures that are clearly not 
orthogonal in fine scale often need to become orthogonal in a 
coarser scale. E.g., inclined roof-structures will be replaced by 
flat-roofs in a rather coarse scale. Because squaring can also be 
understood to be linked to a scale-parameter, it becomes more 
than only a tool to enhance scale-space operations. It can be 
conceived as a scale-space operation on its own, although the 
formal definition of this is not yet clear. 
 
 

3 SQUARING 

The change of angles between facets, which is necessary for 
squaring non-orthogonal buildings, is termed tapering in ACIS. 
Before applying tapering to a building, non-orthogonal angles 
have to be detected and what is even more important, it has to 
be determined how to change them. Intricate practical but also 
theoretical problems have to be solved. The most important is, 
that if the angle between two facets is changed, in most cases 
other angles of the building will be affected, even those that 
should be preserved. As a result often a globally more skewed 
model is obtained. To prevent this, squaring must be tackled 
from a global and not from a local viewpoint. One way to do 
this is to take the main directions of the building into account. 
First results for the elimination of inclined roof-structures are 
presented in Figure 8, which demonstrates the applicability of 
the ACIS function. The approach for detecting non-orthogonal 
structures and for determining the taper angle is described in the 
following section. 
 

 

Figure 8. Results for removing inclined roof-structures by 
means of tapering  

 
3.1 Squaring of roof-structures by means of tapering 

In order to eliminate inclined roof-structures by means of 
tapering, the inclined roof-facets have to be determined. The 
roof-structures aimed at here all consist of facets that are 
significantly inclined, i.e., not perpendicular or parallel to the 
horizontal plane. For each inclined roof-facet the eave-line, i.e., 

the edge with equal z-values for start- and end-vertex, which is 
at the bottom of the facet, has to be determined. Then, all 
inclined facets are rotated, or in ACIS terminology ‘ tapered’ , 
around their eave-lines, until the roof-facets become horizontal 
(cf. Fig. 9).  

 

Figure 9. The roof-facet (yellow) is rotated (tapered) around the 
eave-line (red) until the roof-facet becomes horizontal. 

The advantage of using tapering is the automatic treatment of 
topology-changes by ACIS. A problem occurs when handling 
differently inclined roof structures of more complex buildings, 
if vertices are related to four or more facets. In this case, as 
exemplified in Figure 10, additional elements such as edges or 
even polygons can be created by tapering. This problem occurs, 
because the four edges are shifted in a way, that the unique 
point of intersection is not preserved. In particular, when 
changing the angle between roof-facets with different 
inclinations, ridge-lines with different heights are obtained. 
 
 

 

Figure 10. Differently inclined roof-facets can lead to 
unsatisfactory results when tapering, because no unique 

intersection point exists due to different heights. 

To overcome this problem, another approach for the elimination 
of inclined roof-structures was developed. Instead of changing 
the angle between the facets, the ridge-line is moved 
downwards, until it has the same height as the eave-lines. 
 
3.2 Squaring of roof-structures by moving the ridge-line 

vertices 

Again, all inclined roof-facets are determined. Instead of the 
eave-lines, the ridge-lines are computed. These consist of 
vertices with the largest z-value within an inclined facet. These 
vertices are shifted downwards until they have the same z-
values as the vertices of the eave-lines (cf. Fig. 11). 



This has the advantage, that there is no problem with differently 
inclined roof-facets, as all ridge-line vertices are shifted 
downwards by the same height, independently of the inclination 
of the individual facets. For the time being the only problem is 
the handling of topology-changes. Contrary to the application of 
a specific ACIS-function, for the movement of vertices, these 
are not handled automatically.  

 

Figure 11. Movement of vertices: The vertices of the ridge are 
shifted downwards until they have the same height as the eaves. 

 
Besides this problem, which hopefully will be solved soon, the 
shifting of the ridge-lines provides a rather general procedure 
for the elimination of inclined roof-structures. On the other 
hand, for wall-structures, i.e., vertical or almost vertical facets, 
which can assume any angle, another method has to be found. 
For this, tapering seems to be well suited. 
 
3.3 Squaring of wall-structures 

For walls in most cases strong deviations from the right angles 
have to be preserved in order to obtain the characteristic shape 
of a building (cf. Fig. 12, top), even when the model is coarse 
enough to eliminate its roof-structure. Yet, for small deviations 
of an only approximately orthogonal building, squaring is 
required. Additionally to the fact that a building is usually 
perceived to be made up mostly of right angles, only by 
squaring a reasonable application of the scale-space operations 
can be achieved (cf. Fig. 12, bottom).  
 
 

 

Figure 12. Strong inclinations have to be preserved for large 
structures (top), whereas small parts need to be squared 

(bottom) 

 
Compared to the elimination of inclined roof-structures, the 
squaring of walls is more difficult. There is no predefined 
(vertical) reference direction to compare the facets with. 

Whereas only the deviation from the vertical direction is needed 
in order to determine inclined roof-facets, here the walls can be 
oriented arbitrarily with respect to the X- axis of the world 
coordinate system. Thus, for the determination of non-
orthogonal wall-facets first the main directions, i.e., the X’ - and 
the Y’ -axis of the local coordinate system of the building, have 
to be determined. In case of the building shown in Figure 12 
(top) this is, e.g., ambiguous. If the orientation of the local 
coordinate system has been computed, the facets, which are not 
parallel to the main directions, can be classified as inclined 
wall-facets (cf. Fig. 13).  
 

 

Figure 13. View from the top: X, Y: World coordinate system;  
X’ , Y’ : Local coordinate system; Black arrows: wall-facets 

parallel to main directions; Red arrows: wall-facets deviating 
from main directions  

 
The decision, if a wall-structure has to be squared, or if it has to 
be preserved, can depend on the size of the structure. The 
details of the procedure, i.e., the exact means for identifying the 
main directions of a building, the decision if a structure has to 
be squared or not, and, in case of a squaring, the decision about 
which edge and with which angle a facet has to be tapered in 
order to get a reasonable result, still need to be investigated in 
more detail. As it can be partly treated as a 2D problem, already 
existing solutions from 2D generalization, e.g., the approach of 
(Sester 2000, Sester 2001), will be analyzed and adapted to 3D 
squaring in future. 
 
 

4 CONCLUSIONS AND OUTLOOK 

Using scale-space theory, including mathematical morphology 
and curvature-space, for the generalization of 3D settlement 
data, different building types can be simplified. The approach is 
especially suited for orthogonal models. For an efficient 
application to non-orthogonal objects, additional procedures for 
the squaring of slightly distorted angles as well as for the 
squaring of clearly non-orthogonal structures are needed.  
 
First of all, also squaring can be understood as a scale-space 
linked to a scale-parameter. The theoretical details of this still 
need to be further investigated. Then, for 3D squaring a more 



global treatment taking into account the main directions has to 
be employed, in order to avoid a more skewed object. 
Therefore, the procedures are split into the squaring of roof-
structures, i.e., facets that are deviating from the vertical or 
horizontal direction, and the squaring of walls. The latter is 
similar to the 2D squaring of building ground plans.  
For the squaring of roof-structures, which is important to obtain 
a rather coarse level of detail, two approaches were introduced. 
Both work well for a small set of test buildings. The approach 
based on the movement of the ridge-lines works even for 
differently inclined structures and therefore provides a more 
general solution.  
 
Concerning the squaring of walls, existing solutions from 2D 
will be analyzed and adapted for 3D squaring. In particular, 
methods for determining the main directions of a building need 
to be developed. Automatic decisions have to be made about 
which non-orthogonal structures have to be squared, and which 
have to be kept, in order to preserve the main character of the 
building. Finally, it has to be decided, about which edge a facet 
has to be tapered and for what angle.  
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