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Abstract  
We propose selection of cartographic objects based on the technique of self-organizing map 
(SOM), an artificial neural network algorithm for data clustering and visualization. Using the 
SOM training process, the approach derives a set of neurons by considering multiple 
attributes including topological, geometric and semantic properties. The set of neurons 
constitutes actually a SOM, with which each neuron corresponds to a set of real objects with 
similar properties. Our approach also sets up an exploratory linkage between the SOM and an 
object set. The method is evaluated on a street network.  
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1. Introduction 
A good method for selection of cartographic objects is essential in the generalisation process. 
Ideally, the selection should be based on all available information about the objects. In this 
paper we propose using self-organizing map (SOM) (Kohonen 2001) for the selection 
process. The advantage of using SOM is that the method can take several attributes into 
account simultaneously and it also contains visualisation tools. 
 
This paper is structured as follows. The remainder of Section 1 contains previous work on 
cartographic selection and on the applications of SOM in cartography and GIS. Section 2 
briefly introduces the basic principle and algorithms of SOM and Section 3 contains a case 
study. 
 
 
1.1 Previous studies of selection 
An algorithmic approach for selection consists of two steps: identifying regions of high 
density of objects and removing some of the objects within these regions. The first step is 
performed by a clustering technique. For example, Regnauld (1996) used a minimum 
spanning tree of building objects. When the minimum spanning tree was computed, some 
edges were removed according to criteria such as length of edges, alignment of building 
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objects, etc. Finally, clusters were defined as connected building objects (by the remaining 
edges), and a density analysis was enabled. 
 
To decrease the density of objects in the identified regions, a selection procedure is applied 
based on object size and/or location. Töpfer and Pillewizer (1966) investigated the number of 
objects that ought to be shown at different scales (using reverse engineering). They proposed 
radical law: the ratio of the number of objects in two maps should equal the square root of the 
ratio of the map scales (this is the general rule; further details are given in Töpfer and 
Pillewizer 1966). The radical law does not give any information about which objects should 
be selected. An approach that considers both the number of objects and which objects should 
be selected is Shannon information theory (Shannon and Weaver 1964). Bjørke (1996) 
proposed information theory for cartographic selection. He started by creating several 
proposals for object selection and then evaluated all these proposals. The proposal that 
communicated the message best (according to the information model) was then chosen.  
 
The selection of road objects in a network is a major problem in generalisation. The most 
common method is to base the selection on road object types. However, this method may 
cause loss of important connectivity properties in the road network; to circumvent this 
problem graph theory can be used. Edges and nodes may be weighted by connection 
properties (Mackaness and Beard 1993) or by relative importance in linking a given set of 
locations (Thomson and Richardson 1995). Edges and nodes with low weights are then 
eliminated. It is, however, questionable whether the segments can be handled individually. 
Richardson and Thomson (2001) group segments based on the good continuation principle. 
This principle states that if two edges are connected and aligned they are perceptually group 
by humans. In their work, Richardson and Thomson, base their selection on these segment 
groups, rather than individual segments. Recently Jiang and Claramunt (2002) proposed a set 
of algorithms based on streets (that consists of several links) rather than on street segments. 
The approach is performed at a topological level with a representation, which takes named 
streets as nodes and street intersections as links of a connectivity graph. Based on the graph-
theoretic representation, each street is assigned by two structural measures namely 
connectivity and average path length on which the selection of important streets is based. 
Eventually the selection of streets is applied to an entire named street rather than a street 
segment using the two structural measures respectively. 
 
1.2 Previous studies using SOM in cartography and GIS 
SOM has been used in many fields such as data classification, pattern recognition, image 
analysis, and exploratory data analysis (for an overview, see Oja and Kaski 1999). In the 
domain of GIS and cartography, relatively few applications have been made. Openshaw and 
his colleagues have used SOM in spatial data analysis (Openshaw 1994, Openshaw et al. 
1995). Recently some new proposals have been made in using SOM for spatial data 
exploration (Li 1998) and image classification (Luo and Tseng 2000). SOM has been used for 
building typification in cartographic generalization (Højholt 1995, Sester 2001). In the 
typification process, a number of building objects are set to represent a larger set of objects. A 
major issue here is that the new objects should reflect the original pattern of objects. In the 
approach introduced by Hojholt and Sester, new building objects are placed randomly on the 
map. Then the locations of the new building objects are changed using SOM. In this training 
process the original building objects are used for attracting the new building objects. In this 
way the location of the new building objects will give a similar pattern as the location of the 
original building objects (but properties such as parallelism is not maintained). The use of 
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SOM in this paper is rather different. Here it is used for attribute clustering as a pre-process 
for selection; the locations of the streets are not altered.  
 

2. Self-organizing map  
SOM is a well-developed neural network technique for data clustering and visualization. It 
can be used for projecting a large data set of a high dimension into a low dimension (usually 
one or two dimensions) while retaining the initial pattern of data samples. That is, data 
samples that are close to each other in the input space are also close to each other on the low 
dimensional space. Herewith we provide a brief intuitive introduction to the SOM; readers are 
encouraged to refer to more complete descriptions in literature (e.g. Kohonen 2001).  
  
2.1 Basic principles 
The SOM training algorithm involves essentially two processes, namely vector quantization 
and vector projection (Vesanto 1999). Vector quantization is to create a representative set of 
vectors, so called output vectors from the input vectors. In general, vector quantization 
reduces the number of vectors. This can be considered as a classification, or clustering, 
process. The other process, vector projection, aims at projecting output vectors (in d-
dimensional space) onto a regular tessellation in lower dimensions (i.e., a SOM), where the 
regular tessellation consists of an arbitrary number of neurons. In the vector projection each 
output vector is projected into a neuron where the projection is performed as such, “close” 
output vectors in d-dimensional space will be projected onto neighbouring neurons in the 
SOM. This will ensure that the initial pattern of the input data will be present in the neurons.  
 
The two tasks are illustrated in figure 1, where usually the number of input vectors is greater 
than that of output vectors, i.e. mn f , and the size of SOM is the same as that of output 
vectors. It should be emphasized that for an intuitive explanation of the algorithm, we 
separate it as two tasks, which are actually combined together in SOM without being sense of 
one after another.   
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Figure 1: Illustration of SOM principles 
 
2.2 The algorithm 
The above two steps,vector quantization and vector projection, constitute the basis of the 
SOM algorithm. Vector quantization is performed as follows. First the output vectors are 
chosen randomly or linearly by some values for its variables. In the following training step, 
one sample vector x from the input vectors is randomly chosen and the distance between it 
and all the output vectors is calculated. The output vector that is closest to the input vector x is 
called the Best-Matching Unit (BMU), denoted by c: 
 



 4

||}{|||||| min i
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c mxmx −=− ,                                                [1] 

where ||.|| is the distance measure, usually Euclidian distance. Then the BMU and other 
output vectors in its neighbourhood are updated to be closer to x in the input vector space. The 
update rule for the output vector i is: 
 

])(-)((t)[)()()1( i tmtxhttmtm ciii α+=+ ,                            [2] 
 
where )(tx is a sample vector randomly taken from input vectors, )(tα  is a learning rate 
function, and )(thci  is a neighbourhood kernel function, and t denotes time step. In figure 2 
one step of the update rule is visualised, and the BMU and its neighbours are updated. Vectors 
that are regarded as neighbours are decided by the neighbourhood kernel function ( )(thci ). As 
seen from the update rule the vector is moving towards the randomly chosen input vector x(t). 
The distance of this movement is determined by the learning rate function ( )(tα ). The 
updating process will proceed until a threshold criterion is fulfilled; after that the vector 
projection process is performed.  

 
 
Figure 2: Updating the BMU and its neighbours. The solid and dashed lines represent to 
situation before and after updating, respectively. Copied from Vesanto et. al (2000, p. 9). 
 
In the vector projection process the output vectors are projected on to a regular 2 dimensional 
grid, where each neuron corresponds to an output vector (that is the representative of some 
input vectors; see Figure 1). For a better visual effect of SOM, hexagonal rather than 
rectangular grid is often adopted.  
 
Case study 
Below we evaluate SOM as a technique for cartographic selection in a case study. The case 
study is performed on a Munich street network with totally 785 streets. 
 
The selection of streets is based on the following attributes: degree, closeness, betweenness, 
length, number of lanes, speed limit and functional class (the three first attributes here are 
topological measures of the streets, see Jiang and Claramunt 2002 for details). To base the 
cartographic selection on these attributes we need to transform the numerical values; in this 
case study this is performed in a two-stage process. Firstly, the variation of the values of the 
individual attributes is very large, so we transform the dataset into a unit interval [0, 1] to 
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guarantee that all variables have the same variation. Secondly, the seven attributes should not 
be considered at equally important in terms of street selection. We adopt the weight vector [1, 
1, 1, 2, 2, 2, 3] for the seven attributes in the order of [degree, closeness, betweenness, length, 
lanes, speed, class]. After this transformation we create one input vector (cf. Figure 1) for 
each street in the network. 
 
Based on the equation (1) and (2) one hundred output vectors are created; these vectors are 
then projected on a SOM (cf. Figure 1). The SOM is illustrated on the left side of Figure 3. In 
this Figure each neuron are connected to a set of streets in the map. By selecting neurons 
(black cells in figure 3) a selection of the streets are performed. The selection of neurons is 
done using additional maps that describe the attribute value variations in the SOM.  
 
 
 

 
 

 
 
Figure 3: Two levels of detail of streets network. The streets that are related to the black 
neurons are selected. 
 
From the case study, we have seen how the SOM-based approach can be used for selection of 
streets from a network. The approach is robust and flexible, as it considers multiple 
properties, and a dynamic linkage has been set up between the SOM and the corresponding 
network.  
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