Aggregation on the Basis of Structure Recognition

Jagdish Lal Raheja, Department of Cartography Technical University of Munich

Structure Recognition

Structure recognition: identify specific cartographic objects or aggregates as well as spatial relations, and measures of importance

A city model consists mainly of buildings of differnet shape, style and roads.

Topics to be discussed

- Identification of objects (buildings).
- Identification of spatial relations.
- Aggregations rules based upon sturcture recogoniton.

Simple Buildings

Simple Buildings:

Gable

Dutch hip

Complex buildings

¢

Gable – Lean

Arrow gable

b. building as a group of small buildings joined together forming a special shape

Closed square

bridge

cross

Arc

Trapezium

Building recognition using NN

NN-bsiac structure

Neural Netweok (NN) approach

BUildingId,BuildingType,x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7,x8,y8,z8,x9,y9,z9,x10,y10,z10,x11,y11,z11,x12,y12,z12,x13,y13,z13, x14.v14.z14635.1.606.477.-1.604.476.-1.603.478.-1.602.478.-1.602.481.-1.605.482. 307, 5, 264, 464, -1, 266, 462, -1, 263, 460, -1, 262, 462, -407,7,696,175,-1,696,173,-1,695,173,-1,695,172,-1,693,172,-1,693,175,-538.3.579.310.-1.582.315.-1.584.313.-1.583.311.-1.586.310.-1.584.307.-134,5,446,295,-1,446,293,-1,443,293,-1,443,295,-601,1,516,535,-1,516,533,-1,514,533,-1,514,532,-1,511,532,-1,511,535,-290.5.262.433.-1.264.435.-1.266.432.-1.264.431.-0,1,266,175,-1,266,173,-1,264,173,-1,264,172,-1,261,172,-1,261,175,-1,380,153,1,380,153,1,382,155,1,385,153,1,385,154,1,382,156,1,381,158,0,378,153,0,386,155,0,382,154,0,384,153,0,381,151,0,0,0,00,0,0 255.4.436.312.-1.433.310.-1.433.310.-1.432.310.-1.431.311.-1.431.312.-1.431.312.-1.433.315.-1,433,313,1,432,312,1,433,311,1,434,312,1,436,312,0,433,315,0,433,310,0,431,312,0,433,310,0,431,312,0,431,311,0,432,310,0 679,1,726,441,-1,724,440,-1,723,442,-1,722,442,-1,722,445,-1,725,446,-609.1.596.535.-1.596.533.-1.594.533.-1.594.532.-1.591.532.-600,1,506,535,-1,506,533,-1,504,533,-1,504,532,-1,501,532,-1,501,535,-411.7.633.74.-1.634.75.-1.635.74.-1.635.74.-1.636.72.-1.633.71.-276.4,481,350.-1,483,353.-1,483,352.-1,484,352.-1,485,351.-1,485,350.-1,486,350.-1,483,348.-1.483.349.1.484.350.1.483.351.1.482.350.1.481.350.0.483.348.0.483.353.0.485.350.0.483.352.0.486.350.0.485.351.0.484.352.0 109.4.263.219.-1.261.221.-1.261.221.-1.261.222.-1.262.223.-1.263.223.-1.263.224.-1.266.221.-1,264,221,1,263,222,1,262,221,1,263,220,1,263,219,0,266,221,0,261,221,0,263,223,0,261,221,0,263,224,0,262,223,0,261,222,0 536.3.559.310.-1.562.315.-1.564.313.-1.563.311.-1.566.310.-1.564.307.-1.564.309.1.564.309.1.562.311.1.563.314.1.563.314.1.561.311.1.559.310.0.564.307.0.562.315.0.563.311.0.564.313.0.566.310.0.0.0.00.0.0

Input Data

latabase Source File: Bro	se Table Name:	OK
Broken Bro	b NNdata1	Cancel
Prediction Field BuildingType	Available Fields	Input Fields z16 x17 y17 z17 x18 y18 z18 x19 y19 z19

🗞 NeuNet Pro - NNShapeHeco - [Browse | est Hesults]

<u>File E</u>dit <u>V</u>iew <u>R</u>un <u>P</u>references <u>H</u>elp

🗋 • 🚅 🖨 🗸 🔀 🦓 🥬 🥬 🗦 🚳 💷 🔣 🖄 🗸 🗸 🖄

-	BuildingType	Predicted	Difference	z6	ж7	y7	z7	ж8	y8	z8	ж9	y9	z9	×10	yi
	1	0,99	0,01	0	566	445	0	567	444	1	571	444	1	569	4.
	3	3,02	0,02	1	646	323	1	649	323	1	649	320	1	i 650	3;
	7	7,00	0,00	0	337	222	0	339	222	1	339	224	1	339	2:
	3	3,20	0,20	1	569	221	1	566	221	1	567	224	1	566	2;
	8	8,00	0,00	0	557	130	0	560	129	81	561	133	3	1 557	1:
	1	1,00	0,00	0	557	369	0	558	370	1	559	373	3 1	. 560	3.
		6,96	0,04	U	407	222	U	409	222	1	409	224		409	2
	0	0,84	0,15	U	350	-18	0	349	-17	1	345	-15		1 347 1 CEO	-
	8	8,00	0,00	U 1	503	1.34	0	000	133	-1	200	123		1 210	1.
	4	3.32	0,12	.1	310	201	.1	370	202	1	320	203	2 1	369	31
	1	0.97	0.03	0	326	85	0	327	84	1	370	200	1	329	
	4	3.98	0.02	-1	520	321	-1	520	322	1	520	323	3	518	3
	1	1.01	0.01	Ö	780	428	0	779	426	1	780	422	1	778	4:
	8	7,99	0,01	0	757	203	0	757	200	ો	761	200		757	21
	4	4,27	0,27	-1	331	201	-1	330	202	1	330	203	3 1	328	21
	4	4,13	0,13	-1	537	303	-1	538	304	1	539	304	1	539	31
	1	1,01	0,01	0	557	351	0	558	352	1	559	355	5 1	560	3!
	3	2,90	0,10	1	778	297	1	778	294	1	775	294	1	775	2!
	3	3,04	0,04	1	729	221	1	726	221	1	727	224	1	726	2:
	4	4,00	0,00	-1	451	321	-1	450	322	1	450	323	3 1	448	3:
	3	3,27	0,27	1	559	221	1	556	221	1	557	224		556	2:
	3	3,00	0,00	1	626	323	1	629	323	1	629	320		630	3.
	0	4,72	0,28		540	131	21	541	131	0	540	134		1 539	1.
	5	5.01	3,07		321	103	-1	213	100	1	310	100		1 221	4
	8	7.97	0.03	, n	590	101	1	591	104	.1	520	105	,	590	11
	5	5.06	0,05	1	348	343	1	347	343	0	350	342		348	3,
	7	7.04	0.04	ò	781	-6	0	780	-4	1	779	-5	5 1	778	
	3	2,96	0.04	1	538	21	1	538	18	1	535	18	3 1	535	
	3	2,92	0,08	া	778	315	1	778	312	1	775	312	2 1	775	31
	5	7,25	2,25	1	448	103	1	447	103	0	450	102	2 0) 448	14
	1	1,07	0,07	0	317	9	0	318	10	1	319	13	3 1	320	
	7	7,01	0,01	0	321	325	0	319	325	1	319	323	3 1	320	3;
	4	3,61	0,39	-1	497	225	-1	497	223	1	497	222	2 1	499	2:
	3	3,00	0,00	1	469	-18	1	466	-18	1	467	-15	1	466	
	3	2,82	0,18	1	699	221	1	696	221	1	597	224		696	2,
	8	7,37	0,03	U 1	63/	203	1	63/ E00	200	-1	701	200	-1	637	21
	2	2,30	0,02		556	323	1	559	323	1	569	320	1	560	
	6	6.00	0,02	1	458	444	1	461	445	0	458	020 44F	5 0	1 0	
	4	3.55	0.45	-1	487	225	1	487	223	1	487	222	2	489	2:
	8	8,00	0,00	0	677	130	0	680	129	-1	681	133	3 -1	677	1:
	1	1,00	0,00	0	630	341	0	629	342	1	625	343	3 1	627	3.
	3	2,98	0,02	1	556	323	1	559	323	1	559	320) 1	560	3.
	7	6,98	0,02	0	781	74	0	780	76	1	779	75	5 1	778	
	1	0,74	0,26	0	420	23	0	419	21	1	420	17	1	418	°
	8	8,00	0,00	0	779	161	0	776	160	-1	776	156	-1	. 779	11
	1	1,09	0,09	0	420	77	0	419	75	1	420	71		418	01
	3	3,12	0,12	1	557	231	1	55/	234	1	560	234		560	2:
	0	5,68	0,32		539	3/3	1	541	371	0	540	3/4			4.
	0	0,00	0,00	0	320	.10	0	220	.17	-1	205	142	-	207	
	C	E 01	0,21	, i	100	-10 201	1	, 400	-17 ЭСЕ	1 	323	200		1 <u>327</u>	
2				1											Þ
		0,99		0	566	445	0	567	444	1	571	444	1	569	44
St.	art 🗍 📴 3D	🎦 Ya 😽	N 🖉 Co	🧶 Ne 19% v	'O	🛃 🧶 🗋 🛛	1 🖓 🝃 💼	🥭 🕘 🥢 🖪	7 🗖 🕲 🖂 🖞	🕽 🕒 🖬 🍘	6 🖸 🍪	A 🏷	ļL	.inks » 🚱 🛚 🏹	17:02

Spatial relationship

Spatial relationships among individuals and neighborhood objects is based upon followings:

- i. Proximity
- ii. Containment
- iii. Connectivity

Closest

Contained

Connect

And can be divided into three levels:

Positional parameters

Other parameters

• Symmetry

•

- Regularity
- Orthogonal walls (in most cases)
- Roof types
- General Shapes
- L & U junctions
- parallel lines
- parallelism of faces

Meso level:

- It applies to an object in relation to its neighbors. Out of the three relations described above, proximity is very important relations among 3D buildings in neighborhood.
- Proximity can me obtained by measuring their mutual orientation, angle, distance between them and their height difference

Macro level:

Applies to clusters of objects having similar properties such as settlement blocks and is based on visual grouping behaviors. These visual grouping behaviors are an important aspect in understanding images and maps and therefore has to be maintained. Macro level structure recognition helps to maintain this. Main emphasis is on

- Shape and size regularity.
- Height regularity.
- Regularity of roof structure and surface texture.
- Adjacency to other structures.
- Unique, deterministic features.
- Relative distributional density

Aggregation rules

Aggregation rules are based upon structure recogniton and can be divided into following groups as follow:

Linkage rules define the spatial relations between buildings that must exist for their aggregation.

- Proximity: Two buildings must be disjoint but within a certain distance of each other for their aggregation;
- -Alignment: Two buildings should be aligned or their alignment should not differ much and the difference must be below the permissible limits.
- Angle: Two buildings should have minimum angle between them if they are to be aggregated;
- Height: Two buildings should have minimum height difference if they are to be aggregated. Roof Type: Two buildings should have similar type of roof, i.e., planar or gable if they are to be aggregated;
- Adjacency: Two buildings must have their adjacent faces close if they are to be aggregated

Semantic rules: define the semantic relationships that must exist for aggregation. Semantic rules include relationships such as

- Class: Two buildings must be of the same class
- Structural: a group of objects form a common geographic or perceptual structure.

Orientational rules define the historical or local importance of the buildings. Important buildings such as monument, theatre, tower etc. reflect the city identity.

- Buildings which are of great importance should have their identities preserved at maximum of its extent. Therefore two buildings having historical importance should not be aggregated.
- If only one of the buildings is important, even then aggregation should not be done. Instead the important building should be exaggerated. The same rule applies to other local important buildings like TV towers, theatres, schools etc.

Based upon the above structural recognition, an algorithm for aggregation was developed. It is basically a nested set of If..Else statements. For example:

If $d(o_i, o_j) < \Delta d_{min}$ then AND If $h(o_i, o_j) < \Delta h_{min}$ then AND If $roof_type_1 = roof_type_2$ then AND If $\Delta A(o_i, o_j) < A_{min}$ then aggregate

🔀 Ble Edi View Window ni:3DGer Simplification Aggregation Displacement Enhancement Hop Convert

_ # ×

Future work:

Macro level spatial relation based upon visual grouping will be studied and consequently quantified to judge the quality of generalization. These relation are based upon:

- Parallelism
- Continuity
- Closure
- **Proximity**
- Orientation

Thanks!

