

Using the Straight Skeleton for Generalisation in a Multiple Representation Environment

Jan-Henrik Haunert, Institute of Cartography and Geoinformation, University of Hannover

Using the Straight Skeleton for Generalisation in a Multiple Representation Environment

Outline

- Motivation
- Algorithm for Straight Skeleton
- Application to Generalisation
- Insertion of a new Feature
- Future Work & Conclusion

Motivation

- Comprehensive administration of different data sets
 - Better support of complex analysis
 - More efficient updating process
 - MRDB approach:
 - Correspondences are explicitly expressed as links and stored in a database
 - Example: German cadastral and topographical datasets

Motivation

- Approach for updating in MRDB:
 - Insert feature to base level
 - Generate appropriate representation for target level

1. Generalisation task:

Need for algorithms that generate the proper representation.

Insert new representation to target level

2. Integration task:

Conflation of new features with features in target dataset.

Skeleton Algorithm

- One possibility to gain a linear feature from an areal one:
 - Straight Skeleton Raising roof on ground plan of a house

- Construction by shrinking process:
 - Construct bisectors in vertices of polygon
 - Parallel offset of polygon edges along bisectors until event happens
 - Two types of events:
 - Edge Event
 - Split Event

Skeletons

Straight Skeleton

Constrained Delaunay Triangulation

Medial Axis

Skeleton Algorithm

- **Faster Algorithm:** (Eppstein & Erickson 1999)
 - Generate ordered list of events
 - Perform next event and maintain changes in list.

- Perform next event:
 - Delete adjacent events
 - Add new events
 - Insert skeleton edges
- Perform next event...

Application to Generalisation

- Using the Skeleton for Generalisation:
 - Geometry type change from area to line

Partial geometry type change

Collapse of an area

Reconfiguration of junction areas

Construction of incircles in junctions of skeleton

Two incircles, each containing the centerpoint of the other circle:

 \rightarrow Merge to one junction.

Create new junctions by extrapolation of road axes and intersection.

9

Application to Generalisation

- Example:
 Extracted road axes from parcels

 (after rule based reconfiguration of skeleton)
 - Derived from cadastral data
 - Reference from topographic dataset

Application to Generalisation

- Modification of Algorithm:
 - Setting different inclinations to roof planes
 - To preserve topological relationship with adjacent features: Vertical plane

 Example: Area collapse without change of outer borderline

Insertion of a new Feature

- Integrating a new feature to the target dataset
 - Generalisation of new feature and other features that need to be considered.
 Here: Enclosing Region
 - Approach to Map Conflation problem: When preserving links within generalisation, then counterpart features are known.
 - Rubber-Sheeting Transformation via counterpart features
 - Transforming new features

Esugedicapekeli

Conclusion & Future Work

- Approach for Propagation of Updates:
 - Generalisation and Integration as two different processes
 - Straight skeleton is used for Geometry type change and Collapse

Future Work:

- Which feature needs to be collapsed?
- The geometry type of which feature needs to be changed?
- With which settings does the algorithm need to be applied?
- Which impact does this have on other features?

Using the Straight Skeleton for Generalisation in a Multiple Representation Environment

Jan-Henrik Haunert, Institute of Cartography and Geoinformation, University of Hannover

