Segmentation for 3D building generalisation

Frank Thiemann Monika Sester Institute of cartography and geo-informatics University of Hanover

Content

Algorithm for Segmentation

Analysis and Generalisation Geometric classification of features Additional common sense knowledge

Conclusions

Introduction

elimination of single vertices is not suited for 3D building generalisation

- examine parts
 - size
 - semantic / significance

→ Decompose the complex object in smaller "meaningful" parts to get small objects which can be separately handled.

Segmentation

- using the algorithm of Ribelles, Heckbert ... to decompose a polyhedron in meaningful parts (so called features)
- intersect the polyhedron with one or more plans of its boundary to cut protrusions or fill holes.

Complex Holes

▶ to fill complex holes more than one split-plane is needed

Quality of a split

quality after Ribelles et. al

 $q = \frac{area of the new inserted face}{area of the origin coplanar with the split plane}$

(q lower -> better)

more than one feature \rightarrow evaluate them separatly

- validation of the split
 q < 1 → new area smaller than existing area
- using only the best split
- split the two parts recursively

6

Quality value

Quality Value

Old =2, New =1

8

Old = area of all facets laying in the split plane

New = area of the faces inserted to seperate the parts

0iu =2, 2X

August 21.

q= 0.009

Result of segmentation

- convex parts (protrusions and holes)
- CSG-tree (hierarchy of splits)
- not a generalisation!

Complexity of segmentation

- brute force: "try all combinations of planes for all parts"
 - $O(m \cdot n^{2k})$
 - n ... count of planes
 - m ... count of parts
 - k ... count of planes used at the same time
- optimization:
 - only planes with different normals at once
 - only anti parallel planes with positive distance

cut and fill with one plane at once (→ only simple holes)
 fill complex holes with 2, 3 and 4 planes

Generalisation (generic determination)

- decide only on geometric parameters
 - size but which?
 - extents
 - area
 - volume
 - is it observable?
 - visible area

August 21.

- quasi 1D linear small in 2 dimensions a large length
- quasi 0D punctiform small in all 3 dimensions

Quick-test for visibility using a bounding box

- sorting sides in descending order (a>=b>=c)
 - − if $c > x_c \rightarrow$ no generalisation necessary
 - a < x_a → quasi 0D → omit, enlarge, ...
 - − b < $x_b \rightarrow$ quasi 1D \rightarrow omit, enlarge, ...
 - − A = a b < x_A → omit, enlarge, ...
 - only quasi 2Ds are left
- Depending on the position of quasi-2Ds there is a smaller or a bigger difference in visibility.

Object depending Generalisation

- recognition of the "function" (window, door, roof, balcony, ...)
- attributes;
 - orientation
 - height
 - context
 - similarity (size) in given neighbourhood (distance)
- knowledge
 - typical size / orientation / positions
 - typical height of stories

Conclusions

- algorithm of Ribelles et al.
 - is suited to separate buildings in meaningful parts
 - needs optimization to reduce runtime
- based on the derived features
 - generalisation with generic determination gets possible
 - some optimizations of the CSG tree could become necessary
- object depending generalisation
 - symbolisation, aggregation, typification need semantic information
 - recognition of the semantic type (roof, window ...)

End

► Thank you for listening.

