Segmentation for 3D building generalisation

Frank Thiemann
Monika Sester
Institute of cartography and geo-informatics
University of Hanover
Content

Algorithm for Segmentation

Analysis and Generalisation
 Geometric classification of features
 Additional common sense knowledge

Conclusions
Introduction

- elimination of single vertices is not suited for 3D building generalisation

- examine parts
 - size
 - semantic / significance

→ Decompose the complex object in smaller “meaningful” parts to get small objects which can be separately handled.
Segmentation

- using the algorithm of Ribelles, Heckbert ... to decompose a polyhedron in meaningful parts (so called features)

- intersect the polyhedron with one or more plans of its boundary to cut protrusions or fill holes.
Complex Holes

- to fill complex holes more than one split-plane is needed
Quality of a split

- quality after Ribelles et. al
 \[q = \frac{\text{area of the new inserted face}}{\text{area of the origin coplanar with the split plane}} \]
 (q lower \(\rightarrow\) better)

- more than one feature \(\rightarrow\) evaluate them separately

- validation of the split
 \[q < 1 \rightarrow \text{new area smaller than existing area} \]

- using only the best split
- split the two parts recursively
Quality value

\[v = \frac{3}{1} \]

- New faces inserted
- Faces in the splitting plane
Quality Value

Old = 2, New = 1

Old = area of all facets laying in the split plane

New = area of the faces inserted to separate the parts
Sample building - Step 1

q = 0.003
Sample building - Step 2

11 windows

q = 0.014
Sample building - Step 3

q = 0.162
Sample building - Step 4

q = 0.205
Sample building - Step 5

q = 0.210
Sample building - Step 6

\[q = 0.517 \]
Sample building - Step 7

q = 0.517
Sample building - Step 8

q = 0.009
Result of segmentation

- convex parts (protrusions and holes)
- CSG-tree (hierarchy of splits)
- not a generalisation!
Complexity of segmentation

- brute force: “try all combinations of planes for all parts”
 - $O(m \cdot n^{2k})$
 - n ... count of planes
 - m ... count of parts
 - k ... count of planes used at the same time

- optimization:
 - only planes with different normals at once
 - only anti parallel planes with positive distance

 1. cut and fill with one plane at once (→ only simple holes)
 2. fill complex holes with 2, 3 and 4 planes
Generalisation (generic determination)

- decide only on geometric parameters
 - size – but which?
 - extents
 - area
 - volume
 - is it observable?
 - visible area
Quasi k-D

- quasi 2D – laminar - small in 1 dimension – a large area
- quasi 1D – linear – small in 2 dimensions – a large length
- quasi 0D – punctiform – small in all 3 dimensions
Quick-test for visibility using a bounding box

- sorting sides in descending order \((a \geq b \geq c)\)
 - if \(c > x_c\) → no generalisation necessary
 - \(a < x_a\) → quasi 0D → omit, enlarge, ...
 - \(b < x_b\) → quasi 1D → omit, enlarge, ...
 - \(A = a \cdot b < x_A\) → omit, enlarge, ...
 - only quasi 2Ds are left

- Depending on the position of quasi-2Ds there is a smaller or a bigger difference in visibility.
Object depending Generalisation

- recognition of the “function” (window, door, roof, balcony, ...)

- attributes;
 - orientation
 - height
 - context
 - similarity (size) in given neighbourhood (distance)

- knowledge
 - typical size / orientation / positions
 - typical height of stories
Conclusions

- **algorithm of Ribelles et al.**
 - is suited to separate buildings in meaningful parts
 - needs optimization to reduce runtime

- **based on the derived features**
 - generalisation with generic determination gets possible
 - some optimizations of the CSG tree could become necessary

- **object depending generalisation**
 - symbolisation, aggregation, typification need semantic information
 - recognition of the semantic type (roof, window ...)

End

- Thank you for listening.