

An Optimization Approach To Constraint-Based Generalization In A Commodity GIS Framework

Jean-Luc Monnot, Paul Hardy, Dan Lee

ESRI, Redlands

2006-06-25

Introduction

- Generalization (Model and Cartographic)
 - Not many generalization tools in commodity GIS
 - Lack of contextual awareness for ones that do exist
 - AGENT project good, but tied to active object database capabilities, not in mainstream GIS
- NMAs and others want contextual generalization in commodity GIS production environment
- Research project at ESRI on an optimization approach to constraint-based generalization
 – Rule-Condition-Constraint-Action paradigm

Optimization

- Generalization as optimization
 - Optimizing both the amount of information to be presented, and the legibility/usability of the final map
 - while conserving data accuracy, geographic characteristics, and aesthetic quality.

Concepts & History

Constraints

- Beard 1991, Ruas 1999, AGENT 1999, ...
- Graphical, Structural, Application, Procedural
- Optimization
 - Statistical optimization Metropolis 1953
 - Simulated Annealing Kirkpatrick 1983
 - In Generalization Ware & Jones 1998

Optimizer Prototype - Concepts

- Optimize map (set of data) against a set of rules
- Rule made up of Constraint and Action(s)
 - Constraints define the preferred state
 - Action should improve satisfaction against constraint
- Satisfaction Function for each rule
 - 0 to 1.0 means Unacceptable>Bad>Good>Excellent
- Can have Condition (predicate) for constraint
 - So can apply to subset of features
- Also have Reflex/Trigger actions
 - Good to prohibit invalid states
- Optimizer Kernel
 - Manages plan of actions, backtracks
 - 'Simulated Annealing' optimization technique
 - Gradually lower notional 'temperature'
 - Avoid sticking in local minima (worse in order to get better)

Satisfaction Function

- Function is supplied by every Constraint
 - Can use all of ArcObjects to evaluate satisfaction
 - But often will be simply related to a measurable parameter, such as distance, or area
- Graph of function will vary according to constraint
 - Some will be sudden step, some smooth variation

Different levels of Satisfaction - S

Constraint satisfaction for a given feature: $0 \le S_c(F_i) \le 1$

Constraint satisfaction:

$$S_{c} = \left\langle S_{c}(F_{i}) \right\rangle_{i} = \frac{1}{N_{f}} \sum_{i} S_{c}(F_{i})$$

Feature satisfaction:

$$S(F_i) = \left\langle S_c(F_i) \right\rangle_c = \frac{1}{\sum_c W_c} \times \sum_c W_c S_c(F_i)$$

System satisfaction:

$$S = \frac{1}{N_f} \times \frac{1}{\sum_{c} w_c} \times \sum_{c} \sum_{i} w_c S_c(F_i) = \langle S_c \rangle_c = \langle S(F_i) \rangle_i$$

-2490604.942 1495572.064 Meters

-2489697.679 1495706.857 Meters

Optimizer Prototype – Displacement – GP model with Barriers Prohibition

2,200 0 200 400 600 1,000 1,200 1,400 1,600 1,800 2,000 2,400 2,600 2,800 3,000 800 TTERATION.

Concept proven in DataDraw

Bus route maps - Complex graphic representation

-Rule 1: Minimize change of side and crossings (legibility)
-Rule 2: Graphic continuity
-Rule 3: End and start of routes should be on sides

-Rule 4: ...

Possible Generalization Flow

Optimizer and GP framework

Summary

- Optimization for contextual generalization

 Looks good approach
- Rule = Constraint+Action(s)
 - Optionally [Condition+] Constraint+Action(s) [+Reflex]
- Prototype implemented as GP tools in a commodity GIS
 - Very extensible
 - Easily use GIS spatial knowledge, tools and data structures, within constraints and actions
 - Fits into automated process models for multi-scale product generation

Continuing to develop prototype and scenarios – And evaluating transition to product

Questions and Comments?

jmonnot@esricartonet.com phardy@esri.com dlee@esri.com

This paper is a forward-looking research document, and the capabilities it describes are evolving prototypes. As such, it should not be interpreted as a commitment by ESRI to provide specific capabilities in future software releases.

Aggregation - Input Dataset

Disadvantages of 'classical' Approach

No contextual decision

Strictness of "hard" threshold

Recast Building Centers as Triangles

		Attributes of	of BiT_Tri	iangles				
		OBJECTID *	SHAPE *	NEIGHBOR1	NEIGHBOR2	NEIGHBOR3	SHAPE_Length	SHAPE_Area
IN AN		27385	Polygon	41041	27391	41060	71.585513	234.584632
	/	27386	Polygon	41055	27401	41074	69.73447	195.518397
		27387	Polygon	27397	40968	27399	152.873687	983.084596
5/1		27388	Polygon	40978	27405	41052	80.047342	293.2629
		27389	Polygon	27632	40974	41014	264.154318	1809.723348
		27390	Polygon	41033	27442	41066	120.314603	665.372065
$ \rightarrow $		27391	Polygon	41036	27385	27392	108.919569	499.596311
×		27392	Polygon	41043	27391	27417	113.361633	468.358319
1		27393	Polygon	27394	41056	27421	111.282951	544.178232
N		27394	Polygon	41023	41053	27393	107.25643	252.262674
		27395	Polygon	41044	27406	41050	111.234525	573.350178
		27396	Polygon	27397	40984	27411	194.82887	1732.729543
		27397	Polygon	27396	27387	27402	141.77063	929.419715
		27398	Polygon	27399	40962	27444	142.874876	694.854281
1		27399	Polygon	27398	27387	27403	153.432567	1103.697834
		27400	Polygon	27401	41034	27449	170.540326	1018.595429
		27401	Polygon	27400	27386	27409	81.641758	296.749779
		27402	Polygon	27403	27397	27439	117.110144	565.004255
		27403	Polygon	27402	27399	27423	135.373669	671.980215
/		27404	Polygon	27415	40954	27489	622.497595	2632.855921
l		27405	Polygon	27408	27388	27434	77.992729	270.85875
		27406	Polygon	27407	27428	27395	99.331021	460.26324
		1						•
	R	ecord: 14 4		1 → H	Show:	All Selecte	d Records (0) out of *2000

What are the Constraints?

- 1. "little" triangles prefer to be in clusters proximity
- 2. Triangles prefer being like their neighbors coherence
- Choose the best state for the whole triangle dataset obeying these 2 constraints.

Results of Optimization

Results generally good! Just with 2 simple constraints.

Questions and Comments?

jmonnot@esricartonet.com phardy@esri.com dlee@esri.com

This paper is a forward-looking research document, and the capabilities it describes are evolving prototypes. As such, it should not be interpreted as a commitment by ESRI to provide specific capabilities in future software releases.