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Abstract The search for a robust vector data model that can generate a hierarchy of multiple 
representations, which are valid for analysis at multiple resolutions, from a single highly detailed version, 
challenges GIS and cartographic research communities. Hierarchic decomposition of raster data is 
commonly accomplished by pyramid building algorithms. It is not possible in current GIS environments to 
create pyramids for vector data. The reason is that raster data contain pixels that can be resampled at 
regular or randomized intervals. Vector data in contrast contain features that nest, that connect, that have 
intrinsic contextual meanings with respect to each other. This paper presents a working implementation of 
a pyramid architecture (MRVIN) for vector data that preserves line length, local coordinate density, and 
valid topology at multiple levels of resolution.  The paper describes decomposition and reconstruction 
routines for simple vectors, stream networks, and compound vectors (registered road and river networks); 
presents the database schema for the pyramid, and describes MRVIN architecture. 
 
Keywords MRDB, vector geospatial data, pyramid architecture, internal topology, relative topology. 
 
 
1.0  Problem Context and Objectives 
The search for a robust vector data model that can generate a hierarchy of valid multiple representations 
from a single highly detailed version has challenged GIS and cartographic research communities for 
decades. Whether the content is vector coastlines, transportation, hydrography or administrative 
boundaries, vector data archives remain highly resistant to changing levels of detail on-the-fly. Moreover, 
a lack of user knowledge about appropriate data reduction leads all too often to generalized versions of 
data that do not hold up to reliable measurements, nor retain geographic logic in analysis. Solutions using 
regularized and randomized coordinate reduction to speed computation or display have mixed success, 
and most existing solutions do not correct for topological corruptions introduced during generalization.  
 
Many online data sources (e.g. GISDataDepot, TerraServer) offer downloads of geospatial data compiled 
at standardized resolutions or compilation scales1, as for example in USA, 30-meter DEMs, 1:24,000 
USGS DLG data, or 1:100,000 US Census TIGER files. The downloaded data contains a single 
representation at the original (compiled) level of resolution. Ironically, the first GIS user task that 
customarily follows delivery is generalization, to eliminate some proportion of coordinates, to reduce data 
volume, and/or modify resolution either for display aesthetics or computational efficiency. One objective of 
the current research is to generate a vector data architecture that delivers multiple representations across 
a range of resolutions, and that offers systematic guidelines for choosing an appropriate resolution. The 
solution we are developing is hierarchical, analogous to raster pyramids. 
 
With raster data, the pyramid architecture relies on hierarchical structures (image pyramids, quad-trees or 
R-trees) or on spectral or wavelet decomposition. User-determined cell size determines the pyramid layer 
at which queries, computations, and modeling proceed. Without pyramids, the entire dataset must be 

                                                      
1 The terms “resolution” and “scale” are not interchangeable. Resolution refers to the smallest item that can be 

isolated. In raster data, this is the size of a pixel. It applies to data collection and GIS modeling. Scale is a ratio 
between data measurement and ground measurement, usually length). The ratio refers to a map display, or to the 
proportions at which vector data are compiled. Tobler (1987) offers useful conversions between  resolution and 
scale, including detectable and average resolution. He suggests an estimate to determine the resolution of a vector 
data set is to divide the denominator of the scale ratio by 1000. This gives the size of the smallest detectable item, 
in meters. For a 1:100,000 vector file, the smallest item one should expect to detect is roughly 100 m. in size. 
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queried or acted upon, slowing performance significantly. With pyramids, a single raster data file provides 
the source for working with a series of data representations at multiple resolutions.  
 
GIS environments do not incorporate functionality to create pyramids for vector data. The reason is that 
raster data contain pixels that can be resampled at regular or randomized intervals. Vector data in 
contrast contain features that nest, that connect, that have intrinsic contextual meanings with respect to 
each other. A lake is bounded by a shoreline, which nests within a layered set of contours. Road 
networks must precisely intersect, to be useful for measuring traffic flow. These semantics must be 
preserved at all levels of resolution, if the data are to remain useful for spatial analysis. A second 
objective of the work is to demonstrate how to protect feature intersections, nested features, and other 
intrinsic semantics, such as relationships between point and area features.  For example, building 
locations must not “jump” across roads when transportation networks are simplified. 
 
The third objective follows from the second. The successful vector architecture must preserve all 
properties that characterize sound principles of generalization: line length, local coordinate density, and 
valid topology. The first two are important to cartographic display; and all three are prerequisite to robust 
spatial analysis and modeling. In particular, the solution must incorporate two kinds of topology. Internal 
topology means that line segments must connect at fine and coarse levels of resolution; and isolated 
segments must not intersect. Relative topology preserves feature registration between layers: the road 
feature in one layer must register to the river feature in another layer at the bridge feature in a third layer, 
no matter what resolution they are retrieved. Preservation of internal and relative topology at multiple 
levels of resolution remains the foremost research challenge to be addressed.  
 
This paper moves beyond our previous work on progressive data delivery (Buttenfield, 2002;  2004) 
showing how to construct a vector data pyramid. This paper presents algorithms for effective processing 
of more complicated  features, such as compound vectors (eg., stream tributaries); nested multi-scale 
feature descriptions (eg., road networks and settlement features), and linked multi-layer archives (eg., 
networks of roads and streams). We have created a working architecture called MRVIN (pronounced 
“Marvin”, for “Multiple Representations of Vector Information”) that builds and maintains vector data 
pyramids, such that from an archive of georeferenced datasets (such as all vector layers in the City of 
Boulder database) a user can retrieve complete and georeferenced representations at multiple levels of 
resolution. Retrieved representations preserve line length and local coordinate density, and sustain valid 
internal and relative topologies between retrieved data themes, regardless of whether those themes are 
retrieved from one or from multiple levels of resolution.  
 
The status of the MRVIN project is as follows. The base architecture is complete, with data pyramids 
maintained in a relational data model that handles not only individual features (a single stream channel) 
but also nested features (all tributaries in a watershed) and multiple data themes (road networks and 
point landmarks, in addition to the stream network). We are currently benchmarking county level data sets 
(on the order of tens of megabytes) with an expectation to scale up another order of magnitude in the 
coming year. Testing to date confirms that internal topologies can be established and maintained. We 
anticipate beginning tests on relative topologies this summer, and will report on these at the presentation.   
 
 
2.0 Requirements for a Multi-Resolution Vector Architecture 
To be useful for analysis, pyramid construction must do more than sample or resample the data at regular 
or randomized increments. The algorithms must adhere to specific requirements underlying GIS and 
spatial analysis, and to sound principles of cartographic generalization. The first requirement for a multi-
resolution vector architecture then is a pyramid-building strategy that can maximize line length globally 
and locally, and preserve original coordinates. 
  
The second requirement protects logical consistency. It is important to insure that delivered data retains a 
level of detail that is locally consistent with the original file, and locally proportional to the original 
compilation. Most geospatial data is heterogeneous, meaning that density of detail is non-uniform. Figure 
1 shows the eastern boundary of the United States, which aligns with naturally occurring geomorphic 
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Figure 1. Boundary of contiguous 
USA showing generalization 
problems arising from variations 
in local coordinate density. 

c d

processes. The boundary at Lake Erie (a) (geologists call it a simple coastline) lacks the high frequency 
crenulations at Chesapeake Bay (b), or the space-filling path followed by the depositional features near 
Brownsville Texas (c). All of these feature geometries differ from the repeating crescent pattern formed by 
shoreline processes in North Carolina (d). Geometrically, the differences can be quantified by comparing 
density of detail locally throughout a vector representation (Buttenfield, 1989). Any algorithm that modifies 
resolution must preserve local coordinate density to maintain line length for modeling and to protect 
geographic and visual logic for display.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A third requirement relates to user-control. Ideally, the level of resolution should be specified prior to 
access, for example, the user should be able to request a version equivalent to 30 meter resolution, or for 
representation on a 1:25,000 scale display; or  data conforming to a horizontal positional accuracy of 1 
part in 1,000. For real time data delivery especially, a handheld client should be able to request from 
online servers a vector delivery at a specified resolution, within a given transmission time, or below a 
threshold number of bytes. These specifications should occur at the machine level, automatically. 
 
 
3.0 Design for a Multi-resolution Architecture 
The first algorithms reorganize the vector data into a pyramid, recording metadata on geometry and 
flagging topological errors. The second set access the data progressively and reconstruct vectors in a 
form acceptable for GIS or cartographic use and correct internal topology where necessary. These are 
discussed only briefly: they were initially presented at a GIScience presentation, but we include them here 
since they form a foundation for the new algorithms that preserve topology. The new work includes a set 
of algorithms correcting internal topology for compound vectors and extensions to preserve relative 
topology. 
 
3.1 Reorganizing the Vectors into a Pyramid 
A hierarchical coordinate selection routine deconstructs each vector feature (a road segment, or a stream 
tributary) into a representation of the complete vector, albeit at some intermediate level of resolution. The 
upper (root) level of the hierarchy contains an initial coarse-resolution version of the feature. Lower levels 
“fill in” details that would become apparent if the viewer were observing the feature more closely, or 
measuring it at finer resolution.  
 
Each representation uses a hierarchical subdivision based on the well-known Ramer-Douglas-Peucker 
(RDP) simplification algorithm (Ramer, 1972; Douglas and Peucker, 1973) (Figure 2). Cromley and 
Campbell (1990) show that a hierarchical algorithm that optimizes some geometric property will be less 
effective   than a non-hierarchical solution preserving the same property. Cromley counters his own work 
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five years later (Barber et al, 1995: 276) with an empirical comparison showing that “little geometric 
quality is lost by using a hierarchical operator … and given the greater flexibility of scale representations 
that is possible, hierarchical methods seem to be more satisfactory.”  In spite of longstanding and often 
heated debate, the RDP algorithm provides default vector simplification routine in many GIS packages. 
 
RDP orders selected coordinates in a 
stack or a simple array. For raster data, 
the common logical schema is a 
pyramid. Many alternatives are 
available, dating back more than two 
decades (Ballard, 1981). Becker and 
Widmayer’s (1990) Priority Rectangle 
(PR) files and van Oosterom’s (1990) 
Reactive-Tree structures move high 
priority data towards the tree root. 
Jones and Abrahams’s (1986; 1987) 
Multi-Scale Line tree is partitioned 
using RDP, and selects the same 
points as Ballard’s strip tree. Their 
method is intended for cartographic 
display rather than analysis, as is 
Cromley’s (1991) hierarchical 
simplification method, which requires a 
priori specification of the desired output mapping scales. Our algorithm design is modified from Ballard 
(1981), because the requirements for relative topology require fast determination of line intersections 
between data themes, which Ballard’s design can accommodate.  
 
The modifications implement added flexibility for embedding metadata at all levels of the data model. We 
store a description of the geometry at each level of resolution, including the Minimum Bounding 
Rectangle encompassing the original coordinates (the ‘strip’), a strip identifier, the coordinate endpoints, 
the maximum deviation from the line connecting these endpoints. Other characteristics may be recorded, 
for example local coordinate density or the length in ground units between endpoints (the anchor length). 
Attributes and metadata may be stored in each strip as well. This hierarchical reorganization algorithm is 
previously implemented and tested (Buttenfield, 2002).   
 
Subdivision by RDP meets the initial stated requirements for multi-resolution vector data delivery. A 
complete representation at a given resolution can be generated by traversing any single layer of the tree. 
The resulting representation preserves line length. Cromley and Campbell (1990) show preservation rates 
of 90% line length in their RDP experiments. RDP is therefore likely to preserve geometric details 
adequately. Preserving line length protects high frequency detail that is necessary for accurate 
measurement at all resolutions, and for preserving detail demonstrated to be necessary for visual feature 
recognition (Attneave, 1954). Local density of detail is preserved by nature of the RDP subdivision, and 
local tree depth reflects this. Note that the strip tree stores some vertices redundantly: in Figure 2, 
coordinate (11,2) is stored twice, for example.  Redundancy is necessary for topological checking, 
discussed later in the paper.  
 
3.2 Data Retrieval and Vector Reconstruction 
Data are retrieved to insure delivery of a complete representation of the vector feature at any given 
resolution (Figure 3). Efficiency is improved in each iteration by retrieving only newly partitioned strips, in 
the style of a UNIX dif operation. Later iterations (paradoxically) retrieve more detail but less data, simply 
because as the algorithm progresses deeper into the tree, representations tend to contain fewer new 
strips. The retrieval process delivers no more data than requested, with qualifications that will be covered 
in Section 3.3 on protecting topology. 
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On the left side of Figure 3 are shown anchor lines that connect endpoints of each strip in each 
representation. Anchor lines are generated from the straight line segments connecting the beginning and 
ending coordinate of each strip. With completion of each iteration, the set of anchor lines more closely 
approximate the original coordinate string.  A sample vector is shown in Figure 4.  
 

 
3.3  Modifications to Preserve 
Internal Topology 
Three modifications insure partial 
preservation of internal topology. As 
defined above, correct internal 
topology means that the vectors at 
any resolution do not coalesce, self-
cross, or introduce slivers or other 
topological nonsense. Topological 
checking can resolve graphical 
conflicts in line simplification (deBerg 
et al, 1998; Harrie, 1999; Jones et al, 

2000; see the online demonstration at http://www.cs.cf.ac.uk/user/S.Zhou/MSDBDemo/. However, “there 
has been little progress in the application of such procedures for priority labeling of vertices in a multi-
scale database in order to guarantee topological consistency across retrieved levels of detail of the line 
and area primitives”. (van der Poorten et al 2002: 210)  
 
The first modification speeds the RDP execution (Herschberger and Snoeyink, 1992) to worst-case 
O(nlog2n) runtime, and generates convex hulls in the hierarchical tree. Convex hulls insure that a 
coordinate string will not self-cross at simplified levels of resolution. Saalfeld (1999) formalizes a 
mathematical proof that if two convex hulls overlap, the coordinate strings contained within them may 
converge. If the hulls do not overlap, no topological problems exist locally. Saalfeld proves that with 
convex hulls, RDP always converges to a topologically correct solution, assuming the original vector is 
free of topological errors.   
 
Convex hulls may be constructed by incremental, gift-wrap, divide-and-conquer, or quick-hull algorithms 
(http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html). Even though the incremental method has the 
slowest runtime (O(n2)), it works well for this specific application for the following reasons. Coordinates in 
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any representation are retrieved in incremental order, obviating the need to store all coordinates in 
memory at once. Because coordinates are ordered, the algorithm runs in amortized linear time (Saalfeld 
personal communication, 2001). The incremental routine builds a complete convex hull only once at the 
tree root and then updates the hull incrementally as it partitions the vector (Buttenfield, 2002).  
 
The second modification adds Saalfeld’s (1999) topology check to test for internal errors during RDP 
partitioning. As each row of the tree is generated, adjacent convex hulls are compared. If they overlap, a 

“dirty bit” flag is inserted in the convex hull record to alert for possible 
internal topology conflict.  
 
The third modification occurs on data retrieval. The presence of a dirty 
bit flag in any convex hull in the finest resolution strip initiates retrieval 
of that hull’s children, until the delivered hulls are topologically clean 
(that is, until no flags are detected). For this region of the vector, more 
data is delivered than was requested, and the feature resolution will be 
finer than what the user requests. In pathological cases this could 
result in delivering and reconstructing most of the original coordinate 
string for a nominally coarse level of detail. But all internal topological 
conflicts will be resolved. 

 
Figure 5 illustrates a hypothetical transmission at iterations 3 and 4. Iteration 3 delivers eight convex 
hulls: anchor lines for hulls 5 and 6 converge. The topology check sets the flag as the pyramid is created. 
The vector reconstruction routine detects the flag and delivers two additional hulls in iteration 4 (segments 
61 and 62), adding enough detail to displace hull 6 and protect internal topology.  
 
Figure 6 shows a small portion of a stream network in Boulder County reconstructed at specified levels of 
the partitioning process, including convex hulls (in red). Internal topology has been corrected. This 
network comprises 341 strips in three trees. The trees have a maximum depth of 10 rows. Below row 5, 
hulls conflate so closely with the anchor lines that even for this small example, they are not really visible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Portion of a stream tributary from Boulder County, with hulls.  Pyramid 
rows are displayed for the first five rows of the pyramid. 



Buttenfield and Wolf 
10th ICA Workshop on Generalization and Multiple Representation 
2-3 August 2007, Moscow, Russia 

7 

 
4.0 Dealing with more complicated vector features 
 
4.1 Preserving internal topology for a file containing compound vectors (e.g., stream tributaries, or road 
networks). This aspect of the proposed work handles compound polylines such as in a census tract 
boundary file, or in an EPA River Reach file. We incorporates multiple trees (each describing a single 
tributary) into a “grove” of trees, each grove describing (for example) a stream network. Because 
tributaries may be characterized by differing geometry that does not mirror other trees’ resolutions, one 
cannot assume that the nth level in every tree corresponds to a uniform level of resolution.  Instead, we 
work from measurements of horizontal displacement (in section 5, we refer to this as width and 
summarize minimum, maximum and average widths for trees and for groves). Internal topology within a 
tributary (within a tree) will be preserved by Saalfeld’s topology check. A nearly equivalent algorithm will 
be designed to check for and resolve overlap between tributaries (within a grove). The trees must be 
initially defined to begin and end at topological nodes (stream confluences). Routines to access data at a 
specified level of resolution by definition retrieve complete representations; and this insures that vectors 
intersect at the correct coordinate at all levels of resolution.   
 
Second, overlaps between trees must be resolved. Following the initial definition of polylines, a convex 
hull must be generated to surround the combined footprint of all polylines, forming a hull for the grove 
(Figure 7). Convex hulls for lower layers in each tree must be constructed from this initial hull. It is likely 
that the incremental hull method will once again prove optimal, given that coordinates in any single 
polyline will enter consideration in sequence. This procedure must be reapplied to the entire archive 
whenever a new tree is added (for each new tributary in the network). As a consequence, archive update 
carries an extra computational load, but topological checks proceed efficiently. 
 
 
 
 
 
 
 
 
 
Figure 7. Establishing internal topology for a compound vector. On the left, see five tributaries of a stream network. In 
the middle, a convex hull is established for the entire network (in the database, this is a grove of trees). On the right, 
convex hulls for each tree are constructed, and tested for overlaps using Saalfeld’s (1999) rule.  
 
Checks for overlapping convex hulls utilize Saalfeld’s topology check. The same rule applies: if two 
convex hulls do not overlap, then internal topological problems do not exist at this or any finer level of 
resolution. If overlap is detected, a flag is set for both hulls, and the search is repeated for the child hulls 
in each tree. The check is constrained as follows:  Test both children from one tree for spatial overlap with 
the parent of the other, and continue checking and setting flags only for child hulls where overlap occurs. 
Where no overlap is detected, the procedure terminates. During data retrieval, when a flag is detected, 
retrieval continues to lower tree levels. By Saalfeld’s proof, retrieved representations will neither self-cross 
nor intersect, and internal topology for compound vectors is preserved.  
 
4.2 Preserving relative topology between data themes. A multi-layer archive can be defined as a suite of 
data themes, each containing a different feature class (roads, rivers, landmarks, etc.) This aspect of the 
work alludes to the scenario of the road crossing the stream channel at the bridge. Three compound 
vector files must be verified for internal topology, one each for roads, streams, and point landmarks, so 
that the data retrieval will always resolve to a topologically correct solution, assuming that the vectors are 
free of topological errors to begin with.  
 
In Figure 8, the first step constructs a convex hull bounding the union-ed footprint for three root convex 
hulls, generating new partitions wherever the convex hulls are found to overlap. This step is non-trivial, as 
it involves re-generating the two polyline multi-resolution trees, and resetting all internal topology flags. 
The Figure shows a vector database containing layers for streams (blue), roads (black) and bridges (red). 
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The internal topology can be preserved using three trees for the stream channels and three for the roads. 
Internal topology in this case is equivalent to conventional arc-node topology. To correct relative topology 
between the layers, the original trees must be re-partitioned into five trees each for the streams and 
roads, as shown by the labels in the figure. 

          
             (a)                           (b)                              (c)                              (d)                                (e) 
 
Figure 8. Establishing relative topology between data themes. (a) georeferenced streams, roads and bridges; (b) 5 
stream tributaries with common hull; (c) 3 road network with common hull; (d) streams and rivers with bridges and 
new common hull constructed; (e) spatial intersection of all three themes produces new tributary and road segments 
(note numbering changes on segments) – relative topology corrected. 
 
An important consideration in generating multi-layer pyramids is determining which data layer should 
serve as a base framework for the relative topology. Cartographic convention prioritizes naturally 
occurring data over settlements and transportation nets. For example, a railroad is displaced from a 
stream (not the other way around) so that the stream will remain synchronized with terrain. This 
convention would advise one to base relative topology on the stream layer, as opposed to beginning with 
roads, and that is the solution that will be initially employed. Timpf (1998) presents an alternative and also 
reasonable strategy for sequencing the transmission of multiple data layers: first transmit the 
transportation and hydrographic networks to bound regions, then transmit only those objects within 
regions. A third method would base the relative topologic framework to the layer with lowest 
dimensionality (the point landmarks).   
 
Another important consideration is that the point landmark file (containing bridges) may also require 
reconstruction, if any points expand to polylines as described in Section 6.2. In the road-river-bridge 
example given above, the topology of several segments (e.g., stream segments 4 and 5 and road 
segment 3) is unchanged from the internal topology solution. It is anticipated that relative topology can be 
established efficiently by using this knowledge to advantage (that is, by copying convex hulls and portions 
of existing trees whenever relative topology permits). Shortcuts observed as this solution is designed will 
be deployed to improve efficiency. Once completed, and again by Saalfeld’s proof, the relative topology 
will be preserved for subsequent multi-layer data retrieval.  
 
 
5.0 Implementation 
Currently the physical schema stores data pyramids in relational tables (Figure 9). The complete set of 
vertices is stored in a single table. Each portion of the line partitioned by RDP deconstruction resides in a 
strip, delineated only by that portion’s endpoints. Metadata is stored in the strip table, with fields such as 
original length, anchor length, bandwidth, monotonicity, etc. Representations are simply collections of 
strips that reconstruct the entire line at a specific resolution. Representations may access strips at more 
than one tree level, to preserve internal topology. When a representation is created, summaries of the 
metadata for all included strips are also computed. These summaries are called “structure signatures” 
(Buttenfield, 1986, 1987, 1989, 1991). Structure signatures summarizing the minimum, maximum and 
mean anchor length, bifurcation, or the width deviations (called “res_min”, “res_max”, and “res_mean” are 
stored in the Representation table; other metadata summaries are requested less often, and computed on 
the fly from the Strips table. In Section 6, under future work, we discuss how these metadata summaries 
may help to establish usable limits of resolution for stored data.  
 
Continuing with elements in MRVIN architecture, trees are collections of representations, for example, the 
set of all representations for a single stream channel at all resolutions. Groves are collections of trees that 
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contain compound vectors, for example the entire set of all stream channels in a watershed. The set of all 
groves for a given study area, including streams, roads, landmarks, administrative boundaries etc. reside 
in a Forest. Internal and relative topology problems are flagged by the dirty bit (next-to-last field in the 
strip table) and the Dirty Hulls table, respectively. Relational implementation brings several advantages. It 
obviates the need for pointers to reconstruct representations, which would of course have to be 
recomputed every time the set of convex hulls is created or revised, as would be the case for data 
updates or addition of new features. A relational schema also permits fast reassembly of groves, during 
relative topology correction. 

 
 

Figure 9 Relational schema for the pyramid architecture.  Designations “PK” and “FK” refer to Primary and Foreign 
keys. Arrows show the directionality of table joins. Other elements of the architecture are described in the text. 
Vertices and convex hulls are stored explicitly: this creates redundancy in the database, but it speeds some types of 
search and query. Trees, groves and forest tables may require updating as new data layers are integrated, especially 
to preserve relative topology.   
 
 
Figure 10 shows the current status of MRVIN implementation. The RDP decomposition routine can 
accept either text files or shapefiles. Feature decompositions are stored in a relational database, and 
routines to test internal and relative topologies are in place and ready to be tested.   
 
The box labeled “calculate geometric structure signatures” is almost complete.  This routine records 
metadata about the geometric properties in strips.  The Representation Extraction routines will summarize 
this metatdata, and create structure signatures described in section 5. On the right, a laptop icon called 
the MRVIN client indicates an objective to extend our working environment into a distributed client-server 
architecture, such that mobile applications such as proposed by Neun and Burghardt (2005) could access 
the vector pyramids.  This is an area for future work. 
 
At present the relational database stores only linear features. We acknowledge that polygon topologies 
will require not only solutions at their boundaries (solved by the work on line features) but also work to 
preserve adjacency (that is, the continuous fabric covered by the set of all polygons must not be 
corrupted when internal or relative line topologies are corrected).  Our current thinking is that problems 
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such as buildings jumping across simplified roads, or towns shifting across simplified rivers, can be 
managed within the convex hull, but to date we have not undertaken systematic testing to establish 
whether this is the case.  This forms an important and challenging area for future work.    
 

 
 

 Figure 10.  Current MRVIN architecture and status of completion 
 
 
6.0 Future Work 
The progress to date opens many directions for possible work. One establishes a capability common to 
current GIS environments, namely, spatial clipping, so that users are not restricted to downloading entire 
trees, groves or forests.  A second establishes limits for the range of resolutions beyond which data 
pyramids lose cartographic or geographic validity. A third direction that we are considering is how to 
support representations whose dimensionality changes with resolution, for example urban areas. 
 
6.1 Spatial clipping within a multi-resolution vector data model. Any footprint that falls within a compound 
vector or multi-layer vector database can be spatially clipped, implementing a routine that can operate on 
either a specified upper right and lower left coordinate pair, or by GIS feature selection. For example, to 
respond to a query “what is the total length in meters of the tributaries of Clear Creek that lie within Gilpin 
County?”, the grove of stream features named Clear Creek must be clipped to the county boundary. 
Clipping must be constrained to a specified resolution. The clip routine must identify the convex hull that 
contains specified limits and then search child hulls until one of two conditions is reached. Either a set of 
hulls are identified that are contained completely within the specified clip window; or the leaf nodes of the 
tree(s) are visited. This solution may require an additional pass through the clipped data subset that 
adjusts vector topologies to the specified resolution.   
 
6.2 Using metrics to establish ‘usable limits of resolution’ for a multi-resolution, multi-layer vector dataset. 
This is a more difficult capability to implement, in part because quantitative measures assessing the limits 
of fitness for use have not been rigorously established.  Solutions have been proposed (at previous 
sessions of this workshop, for example) but none have been widely accepted. Our approach is based on 
measuring the rate at which details are lost at coarser resolutions.  We know that rates vary for different 
data domains: hydrography is more sensitive to changing resolution than road networks, for example. To 
compare rates at which details are lost between trees, groves and forests, we plan to utilize the metadata 
summaries and structure signatures described in Section 5.  
 
Our challenge in doing so can be described as follows: it is likely that in a multi-layer, multi-resolution 
archive, trees in the grove of roads will be much shallower (contain fewer rows) than trees in the streams 
grove; and the bridge tree will be very shallow indeed (contain only one or possibly two rows). Metadata 
comparisons therefore cannot proceed simply by comparing, for example, row 8 for streams with row 8 for 
roads; instead, we plan to base comparisons on the minimum and maximum resolutions summarized for 
representations. In coming months, we will conduct experiments with a multi-layer archive of 
hydrography, transportation networks and administrative boundaries for Boulder County Colorado, to 
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systematically integrate data representations, and to determine how far one can “push” non-
homogeneous levels of detail, addressing the question, how discrepant can representations be without 
irreconcilable topological problems.   
 
6.3 Linking database descriptions for vector features whose geometric dimensionality changes with 
resolution. This refers to the issue of the settlement that explodes from a point (a coordinate pair) to an 
areal region (a compound polyline bounding an area). The problem has also been posed by Devogele et 
al (1998), and by Haunert and Sester (2004). The solution is to create and link dual feature descriptions, 
and modify pointers in the pyramid. Instead of pointing to a left or right child, the pointer should be set to 
another tree. Data groves can be linked just as effectively for a stream segment that metamorphoses 
from a single channel to a braided channel. The dual descriptions are stored within a single compound 
vector archive; and internal topological checking proceeds in identical fashion as described above. This is 
a somewhat different solution than the multi-resolution object identifiers as proposed by Bertolotto and 
Egenhofer (2001), who did not nest or interleave data models. 
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