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Abstract 

When reducing the scale of a topographic database, some areas of the data set become too small for 

representation and need to be aggregated with others, unintentionally but unavoidably leading to changes of 

some areas’ land cover classes. In this paper, we approach this problem by optimisation: Given a planar 

subdivision containing areas of different land cover classes, the problem is to aggregate areas into contiguous 

regions and to define the class for each region, such that each region satisfies a size threshold and the overall 

class change is minimal. A second objective is to create compact shapes. In an earlier paper we proved that the 

problem is NP-hard. We have presented a method by mixed-integer programming for its solution and introduced 

several heuristics. Our tests revealed that, even with the defined heuristics, our method does generally not allow 

to solve problem instances of more than 400 areas. 

In this paper we present a new efficient heuristic for the problem. Our approach is to locally introduce 

intermediate levels of details. Steps between these scales can be processed using our previously presented 

method. This approach allows processing large data sets – a complete map sheet of the German topographic map 

at scale 1:50.000 was processed to meet the requirements for the scale 1:250.000. We show that our method 

generalizes an existing iterative algorithm for the same problem and compare the results being obtained with 

different settings of our method. Compared with the existing iterative algorithm, our method resulted in 27,4% 

less change of land cover classes. 
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1 Introduction 

Topographic databases often contain areas of different land cover, which define a subdivision 

of the plane (Figure 1). In order to satisfy defined minimal dimensions for a smaller scale, 

areas need to be aggregated. In an earlier paper we proposed a method for this generalisation 

problem based on mixed-integer programming, a combinatorial optimisation technique 

(Haunert and Wolff, 2006). The method guarantees contiguous aggregates of sufficient size 

(referred to as regions) and minimizes a combined cost for class change and non-compactness 

of resulting shapes. A result with this setting is shown in Figure 4. Though the obtained 

results were very promising, the required running time turned out to be prohibitive for 

cartographic production. 

This paper presents a new improvement of this method, which enables the processing of large 

data sets. The proposed algorithm locally introduces intermediate levels of details. To go from 

one level to the next, our existing optimisation method is applied. We show how to define the 

intermediate scales, such that, in each iteration, no more than a user specified number of areas 

k  needs to be processed at a time. 

In contrast to our global approach, which reaches the required target scale in a single step, our 

new approach is hierarchical, i.e. the aggregates in the final scale are composed of smaller 

aggregates of areas. Unfortunately, this approach does not give a theoretical guarantee of 

performance. However, we legitimate it by showing that it generalizes a well-known and 

accepted iterative method for the same problem. To be precise, by setting k = 1 the algorithm
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performs exactly as the iterative method proposed by van Oosterom (1995) for setting up the 

so-called GAP-tree. It is assumed that by increasing the number of areas that are processed at 

a time, the result becomes more similar to the global optimum. An additional benefit is the 

tree structure of the result, which presumably can be exploited for adaptive zooming and 

incremental updating. 

The method was tested for a data set corresponding to a complete map sheet of the German 

topographic map at scale 1:50.000. This was generalized to scale 1:250.000. Different settings 

were applied, clearly confirming the assumption that the quality increases for higher values of 

k. The paper is structured as follows: Section 2 reviews related work by other researchers. In 

Section 3 our previously presented global optimisation approach is briefly described. Section 

4 presents the new improvement of this method. Finally, Section 5 gives a conclusion. 

2 Related work 

The generalisation of polygon maps requires solutions for multiple subproblems. Beside 

aggregation, the most important problems are class abstraction (van Smaalen, 2003), area 

collapse (Haunert & Sester, 2007) and line simplification (de Berg et al., 1995). In recent 

years, the integration of multiple operators for polygon generalisation has been approached by 

 

  
Figure 1: An example from the German 

topographic data set ATKIS at scale 1:50.000. 

Figure 2: A result of the iterative algorithm 

at scale 1:250.000. 

 

  
Figure 3: A result at scale 1:250.000 with 

minimum class change. 

Figure 4: A result at scale 1:250.000 

minimizing a combined cost for class 

change and non-compactness. 
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application of multi-agent systems (Galanda, 2003). However, due to the resulting 

computational complexity, these have been controlled by application of a hill-climbing 

approach. A problem of this is that it typically gets stuck in local optima (Michalewicz & 

Fogel, 2004). Deciding between a more integrated approach and more complex optimisation 

techniques is clearly a trade-off. According to our experiences, iterative greedy methods do 

not produce aggregation results of high quality. We therefore propose to solve the aggregation 

problem independently by application of a more sophisticated optimisation technique. To 

explain the observed shortcomings of an iterative method, we describe the algorithm of van 

Oosterom (1995) in Section 2.1. 

2.1 An iterative approach to area aggregation 

Van Oosterom (1995) defines an algorithm for the aggregation of areas as follows: 

- In each iteration, the feature with lowest importance is selected. 

- One of its neighbours is chosen according to a collapse function.  

- The selected feature is merged with this neighbour and the next iteration is processed. 

In order to satisfy minimal dimensions for a target scale, the importance of a feature can be 

defined by its area. In this case, the algorithm can be terminated if all areas satisfy the 

required size threshold. 

Many proposed algorithms are specialisations of this general method. Jaakkola (1997) uses 

the method within a more comprehensive generalisation framework for raster based land 

cover maps. Podrenek (2002) discusses preferences for merges, which reflects the collapse 

function. Bobzien (2001) presents results with different definitions of the processing order. 

Generally, semantic similarities of classes, boundary lengths and area sizes are considered as 

criteria that need to be incorporated into the collapse function. 

For a previous study we implemented the algorithm of van Oosterom and presented the 

possibility for incremental updating (Haunert and Sester, 2005). Though the results were 

mainly satisfactory we observed certain shortcomings. These can be seen in Figure 2, which 

shows a result for the example from Figure 1. 

The red settlement area in the bottom left corner of Figure 1 is slightly too small for the target 

scale 1:250.000. A cartographer would try to save this feature by changing small adjacent 

forest areas (dark green) into settlement. The iterative algorithm however is greedy and not 

able of taking consequences for future actions into consideration. During the processing, the 

small green areas are merged with the bigger green areas on the right side. By this, the loss of 

the settlement area becomes definite. Examples like this motivate to apply global optimisation 

techniques. We explain our approach in Section 3. 

2.2 Optimisation approaches to aggregation problems in other domains 

Though we are not aware of any other global optimisation approach to area aggregation in 

map generalisation, there exists a multiplicity of related problems that have been investigated 

by researchers. Especially, in the field of operations research optimisation methods for 

districting and aggregation problems have been developed. A typical application is the 

definition of sales districts presented by Zoltners and Sinha (1983). Their solution to find 

optimal districts is based on mathematical programming. A good theoretical introduction to 

this method from combinatorial optimisation is given by Papadimitriou and Steiglitz (1998). 

Other researchers have applied meta-heuristics such as simulated annealing (Bergey et al., 

2003). In (Haunert, 2007) we compare both approaches applied to area aggregation in map 

generalisation. 
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3 An approach based on global optimisation 

In this section we explain our approach to area aggregation by optimisation. In Section 3.1 we 

describe the optimisation problem, i.e. the defined constraints and optimisation objectives. In 

section 3.2, we review two methods, which we have developed for its solution: The first 

approach is based on mixed-integer programming, i.e. it is deterministic and exact (Haunert & 

Wolff, 2006). The second approach is based on simulated annealing, i.e. a randomized meta-

heuristic (Haunert, 2007). 

3.1 Aggregation as global optimisation problem 

In the original presentation of our approach we gave a formal definition based on graph theory 

(Haunert & Wolff, 2006). Here, only the basic ideas behind this are reviewed. We assume, 

that input and output map contain the same classes. In the case that generalized classes are 

defined for the target scale, reclassification and aggregation can simply be done successively. 

Specifications of data sets often define size thresholds, which must be satisfied. These 

thresholds can be different for different classes. In the following, we assume that the same 

size threshold θ is defined for all land cover classes. This simplifies the notation of our 

algorithm. However, extending our method to the more general case can easily be done. 

The aggregation problem is to group all areas into contiguous regions of size at least θ and to 

define the class of each region. To avoid that new classes pop up in the generalized map, it is 

defined that each region must contain at least one area whose class does not change. 

Usually, it is not possible to satisfy the defined requirements without changing the classes of 

some areas. An obvious objective is to minimize the total amount of class changes, since 

generalisation aims to keep the map similar to the input. For this we define a distance between 

pairs of classes representing costs that are charged for changing an area of unit size from one 

class into another. This distance models semantic similarities of classes: Changing an area 

from grassland to farmland is cheap, since both classes represent similar real world 

phenomena. In contrast, changing an area from grassland to water is relatively expensive. 

Generally, these distances are not symmetric, since certain classes are considered of higher 

importance than others. Thus, changing areas of a valuable class (e.g. settlement) into a very 

frequent class (e.g. grassland) can be defined to be more expensive than vice versa. 

Our first experiments showed that it does not suffice to minimize the costs for class changes. 

The optimal results often contained small isthmuses that were created to connect areas of the 

same class while expending a minimum cost (Figure 3). 

Because of this, we have defined measures of compactness. Both objectives, compactness and 

similarity of classes, are combined as weighted sum in a cost function, which is minimized. 

We assume that cartographers, expressing their subjective preferences, can define the 

parameters of our model. Figure 4 (right) shows the result of a setting we consider suitable.  

The described problem was proven to be NP-hard, which means that it is very unlikely to find 

an efficient algorithm that reaches the optimal solution. 

3.2 Review of developed solutions 

A common method of combinatorial optimisation is mathematical programming. Following 

this approach, we have defined integer and fractional variables that model the aggregation 

problem. The optimisation objective and the constraints can be expressed by a linear term and 

linear inequalities, respectively. Such an optimisation problem is called a mixed-integer linear 

program. Often, also the term mixed-integer program (MIP) is used with assumption that all 

expressions are linear. A MIP can be solved with branch-and-cut techniques, which are 

implemented in commercial programming libraries. For the solution of the aggregation 
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problem we used the ILOG
TM

 CPLEX
TM

 Callable Library, version 9.1. Tests of our method 

showed that optimal solutions can be found only for small instances of the problem. The 

processing time exponentially explodes: Instances with 30 and 40 areas were solved in 90 

seconds and 13 hours, respectively. For an instance with 50 areas a solution was found, but 

after 20 hours the algorithm did still not prove its optimality. Because of this, specialized 

heuristics have been introduced resulting in an alternative MIP formulation and the 

elimination of variables. With this, instances with 400 areas were solved in 17 minutes. For 

small instances the cost for the obtained solution was about 10% higher than the optimum 

obtained without heuristics. 

The implemented simulated annealing approach results in solutions of slightly less quality 

(again +10% compared to MIP with heuristics). The time needed to process large datasets is 

slightly less, however still high. The data set with 400 areas was processed in 8 minutes. The 

major disadvantage of this method compared to mixed-integer programming is the 

requirement for the definition of several tuning parameters, which are not inherent to the 

aggregation problem. An expert in cartography is probably able to define parameters like 

distances between land cover classes, but e.g. the definition of an annealing schedule either 

requires deep insight into the algorithmic theory or extensive experiments. Because of this, 

the mathematical programming approach should be preferred. 

Nevertheless, our new approach does not require a combination with any specific optimisation 

technique. It is simply assumed that instances up to a certain size can be solved near-

optimally in reasonable time. The presented methods have been applied only for small 

problem sizes and it has been doubtful whether the approach is useful for cartographic 

production. The next section presents our new approach for handling large data sets. 

4 A combined approach for efficient area aggregation 

In this section we present a new algorithm for processing large data sets. Section 4.1 reviews 

a heuristic, which has been introduced but not fully exploited in our previous paper. We 

explain that, with this heuristic, the problem can be decomposed into smaller instances. The 

algorithm in Section 4.2 uses this fact. Results are presented in Section 4.3. 

4.1 Decomposing the aggregation problem based on predefined centres 

A heuristic, which was introduced in our previous paper, is to predefine some areas as centres 

of regions (Haunert & Wolff, 2006). Such centres have different meanings: 

- It is not possible to change the class of a centre, i.e. a centre defines the class of a 

region. 

- The centroid of such an area defines the geometrical centre of a region. This is used to 

measure the compactness of the region’s shape, i.e., for each area contained in the 

region, a cost relative to its distance from the geometrical centre is charged. 

- It is not possible to merge multiple centres in one region. 

Clearly, this heuristic is reasonable, if large, dominant areas are selected as centres. A rather 

conservative approach is to define those areas in the original map as centre, which already 

satisfy the size threshold θ. The effect of this definition is illustrated in Figure 5, showing the 

complete data set at scale 1:50.000. Each area being predefined as centre is filled black. It can 

be observed that such areas cover a rather big part of the data set. 

Until now, this heuristic has been used to eliminate variables in our MIP. However, it is also 

possible to use the same heuristic for decomposing the aggregation problem into several 
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Figure 6: A data set at scale 1:50.000, all areas having 

sufficient size for the target scale 1:250.000 filled black. 

Figure 5: Instances of the 

aggregation problem appearing 

during our algorithm. Areas 

with size < θ  white; areas 

satisfying threshold grey. 

 

smaller problems. In fact, the aggregation problem can be solved independently for each set 

of areas that is completely surrounded by centres. This is simply because those features of a 

centre that potentially influence the result of the aggregation, i.e. its class and geometrical 

centre, are fixed. Unfortunately, this fact does not allow partitioning the data set into 

manageable problem instances. There is no guarantee that there is more than one connected 

component of areas not being predefined as centres and, in our example, the resulting 

‘islands’ still contain too many areas. However, when defining an intermediate scale, the 

required size of regions decreases and, consequently, the number of centres increases. In the 

next section we discuss how to locally define intermediate scales and corresponding 

thresholds, such that the resulting problem instances have a limited size, e.g. include not more 

than 200 areas of size smaller than θ . 

4.2 A generalisation of the iterative algorithm 

In each iteration of the algorithm from Section 2.1, only results of single, potential merge 

actions are analyzed. Such an iteration can be described as the solution of a very simple 

instance of the optimisation problem, which is displayed in Figure 5 (top). The area, which 

was selected due to its minimal size, is displayed in white. All neighbours that are potential 

candidates for a merge are displayed in grey. The size of the smallest area among these 

neighbours is applied as threshold for the aggregation problem. With this setting, all grey 

areas in the figure are defined to be sufficiently large. All white areas need to be aggregated 

with others. Arrows display the direction of potential merges. By solving this instance 

optimally, the best neighbour is chosen and the merge is performed. The original iterative 

algorithm would have done the same. 

A step like this can be regarded as a small decrease of scale, having the consequence that only 

the smallest area in the data set becomes too small for representation. With the heuristic from 

Section 4.1, this is the only area not being predefined as centre. The basic idea behind our 

combined approach is to move in bigger steps to the target scale, i.e., to iteratively solve 
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instances similar to Figure 5 (top), but larger. By this, more combinations can be analyzed in 

one step, which probably results in solutions of higher quality. 

 

Such an instance of the optimisation problem is illustrated in Figure 5 (bottom). It includes 

multiple areas that are smaller than the area threshold (white), but again these areas are 

surrounded by predefined centres of sufficient size (grey). We refer to the set of white areas as 

being contained in the problem instance. Also here it is allowed to merge white areas with 

grey areas. Additionally, it is possible to define a new region by a set of white areas. Black 

lines without arrows are drawn for these potential merges that are not restricted by a direction. 

Instances like this can be solved with the developed optimisation method, including several 

hundreds of areas. To define instances like this, we also iteratively select the smallest area, 

but instead of merging it with a neighbour it is assigned to an open problem instance. 

Throughout the algorithm these instances grow until a critical size is reached. In such a case, 

the problem is solved.  

It remains to define which problem instances are too large to be handled and which instances 

can be solved with the developed optimisation technique. It is clear that this decision depends 

on different criteria. By use of a multiprocessor computer and a state-of-the-art software for 

the solution of mixed-integer programs it is certainly possible to process larger instances than 

by application of a standard PC and a license-free optimizer. Also, different cartographers 

might be willing to spend different amounts of time for data processing. Because of this, it is 

reasonable to simply define an integer k. Instances with more areas smaller than θ (white 

areas in Figure 5) are not solved. Before defining k one should test whether the applied 

combination of hardware and software can cope with instances of this size. 

Algorithm 1 specifies our approach: 

 

Algorithm 1: Defining and solving problem instances of critical size. 

 

Let us consider the case k = 1. In this case, the set P is empty throughout the processing, as 

problem instances defined by the smallest area are immediately solved. Therefore, the 

algorithm generalizes the existing iterative algorithm.  

P = a set of open problem instances, initially empty 

a = smallest area in data set 

while a is smaller than required for the target scale do 

 P’ = the set of problem instances in P containing a neighbor of a 

 if total number of areas contained in instances P’ < k then 

Remove all instances in P’ from P. 

Create a new instance p comprising all areas in instances P’ plus a. 

if p contains k areas then 

 //The new instance has critical size. Introduce intermediate scale: 

Solve p (threshold = size of smallest centre in neighborhood). 

  else 

   Insert p to P. 

  end if 

else 
//The instance will exceed the critical size. Introduce intermediate scale: 

Solve the instance in P’ containing most areas (threshold = size of a). 

Remove this instance from P. 

end if 

a = smallest area in data set, not contained in instances P 

end while 
Solve all remaining problem instances in P, applying the threshold for the target scale. 
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In Section 3.1 we mentioned the disadvantage of tuning parameters, which are not inherent to 

the problem. The parameter k has such disliked characteristic. However, it can be argued that 

setting k = 1 is not wrong; it is simply more likely that solutions of higher quality can be 

obtained when foreseeing more merges at once. We can consider a chess player as allegory: It 

is not possible to foresee a complete match. Because of this one will try to think as many 

moves ahead as possible. 

4.3 Results 

The proposed method has been tested for a complete data set of the ATKIS DLM 50, 

corresponding to a topographic map at scale 1:50.000. Before applying the aggregation, a pre-

processing based on Straight Skeletons was applied, comprising area collapse, partial area 

collapse, and polygon decomposition (Haunert & Sester, 2007). This is required, as small 

details like long narrow polygons would otherwise have a large influence on the aggregation 

result. The resulting data set includes 5537 areas. This is referred to as input (Figure 7). We 

tested our presented method for this, using different values for k and two different settings for 

the cost function, i.e. we tested our method for minimizing class change and for a combined 

cost for class change and non-compactness. We applied the thresholds defined in the ATKIS 

specifications for the scale 1:250.000. 

When minimizing class change, setting k = 200 resulted in 27,4% less costs compared to the 

purely iterative method (k = 1). When minimizing a combined cost for class change and non-

compactness, which we consider more adequate, the total improvement was only 7,8%. Table 

1 summarizes our results for this bi-criteria objective. It can be seen that the costs for non-

compactness are very similar for different values of k. It seems that, concerning this objective, 

the iterative algorithm does quite well by greedily choosing a neighbour. However, the 

decrease of costs for class change is still considerable (19,8%). Note that, for the special case 

k = 1, our implementation is certainly not optimal in matters of efficiency: In each iteration a 

MIP is defined and solved. Of course, explicitly testing all neighbours could be done faster. 

 

k = maximal number of areas per iteration  1 50 100 150 200 

processing time (minutes) 3,86 2,05 8,66 26,06 82,27 

cost for class change (normalized) 100 90,0 86,8 85,8 80,2 

cost for non-compactness (normalized) 100 99,4 98,0 98,8 98,2 

total cost (normalized) 100 96,2 94,3 94,5 92,2 

Table 1: Experimental results for a combined cost for class change and non-compactness 

 

The resulting map with the combined objective and k = 200 is displayed in Figure 8. Figure 9 

shows an example from this data set. The settlement (red) in the input data set (Figure 9, left) 

is too small for the target scale. Therefore, it is merged with a neighbour by the iterative 

algorithm (centre). When taking more combinations into account, i.e., for k = 200, the 

settlement can be saved by changing two small areas from forest to settlement (right). By this, 

the settlement becomes sufficiently large. This is preferred due to two reasons: Firstly, the 

change of the relatively large settlement would be more expensive. Secondly, the resulting 

shape is relatively compact. Examples like this motivated the development of the proposed 

method. The result confirms, that high quality solutions can be obtained.  

In addition to this empirical analysis of the results, the next section gives a more abstract 

explanation about possible benefits of the algorithm.  
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Figure 7: Input data set ATKIS DLM 50 (1:50.000) after pre-processing. 

 

 

Figure 8: Result obtained with proposed method at scale 1:250.000. Problem instances with 

200 areas or less solved by application of optimisation method. 
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Figure 9: Input (left), result of purely iterative algorithm (centre), and result of combined 

approach (right). The latter can save the red settlement by ‘stealing’ two small green areas. 

The small boxes display the same samples at scale 1:250.000. Note that lines need to be 

simplified and colours were chosen to emphasize differences of classes. 

 

4.4 Future work 

The proposed algorithm does not offer a theoretical guarantee of performance. However, in 

addition to the observed improvement of quality compared to the original algorithm, there are 

good reasons to apply the proposed procedure. 

Figure 10 (left) shows a possible hierarchy of areas resulting from the purely iterative 

algorithm from Section 2.2. The displayed nodes represent areas in the original map (bottom), 

the resulting area in the output (top) and aggregates that were produced by merging pairs of 

areas. Assuming that the displayed distance of a node from the bottom line corresponds to the 

area’s size, a map with no area smaller than a variable threshold can be defined by moving the 

grey line up or down. The map comprises the areas that correspond to the leaf nodes of the 

tree after cutting it off below the line. This hierarchical characteristic has been shown to be 

useful for adaptive zooming (van Oosterom, 1995) and incremental updating (Haunert and 

Sester, 2005). 

Figure 10 (right) shows that the global approach does not have such characteristic. It offers a 

globally optimal solution for a target scale, which is obtained in a single step. The combined 

approach (centre) tries to reach the target scale via big steps. If needed to overcome the 

intractability of the problem, intermediate levels of detail are introduced. 

Presumably, such stepping-stones can be useful for continuous zooming, or to restrict the area 

of an update’s influence, which is needed for incremental generalisation. For the first 

problem, the most decisive question is when to introduce intermediate scales. Note that 

Algorithm 1 only introduces such scales if required to keep the problem solvable. However, in 

view of applications that require continuous zooming, it might be beneficial to do this more 

   

Figure 10: Tree structure resulting from original algorithm (left), combined method (centre) 

and global approach (right) for one region in the output data set. The grey line in the left 

subfigure depicts the possibility to define intermediate scale levels. 
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often. For incremental generalisation it is in particular useful that, applying the centre 

heuristic from Section 4.1, the problem can be decomposed into smaller instances. Because of 

this, a local update like the change of an area’s land cover class in the original map does not 

require a complete new processing of the generalised map, but only a new processing of the 

connected component that is surrounded by unchanged centres. However, it is supposable that 

the resulting area of influence of an update becomes too large, especially if the predefined 

centres are modified. Additional heuristics might be useful to restrict this problem. 

5 Conclusion 

A new method for the automated aggregation of areas in a planar subdivision has been 

developed, which has been shown to be applicable for large problem instances. The method 

combines an existing iterative procedure with techniques from combinatorial optimisation. 

The assumption that the method results in maps of higher quality than the purely iterative 

algorithm was confirmed by discussion of examples with experts and a comparison of results 

being obtained with different settings. We have shown that our algorithm generalizes an 

existing iterative method and produces results with considerable less change of land cover 

classes compared to the purely iterative algorithm.  

When minimizing class change, our method resulted in 27,4% less costs. However, our 

method only marginally improves the compactness of shapes. When considering both criteria, 

our method resulted in 19,8% less class change, 1,8% less costs for non-compact shapes and, 

as a result of a weighted sum, 7,8% less total costs.  

We conclude that, in contrast to the purely iterative method, our method is able to preserve 

important features by sacrificing less important ones. 

Future work will concern with possibilities for adaptive zooming and updating. 
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