Automatic Knowledge Revision in a Generalisation System

Patrick Taillandier
Laboratoire COGIT — IGN France
2 avenue Pasteur
94165 Saint Mandé CEDEX - France
patrick.taillandier@ign.fr

Abstract: We are interested in this paper in the automatic revision of procedural
knowledge for generalisation systems based on the agent paradigm. Our approach
consists in analysing the system execution logs and extracting new knowledge
from thee logs using machine learning techniques. The objective is not only to
improve the system in terms of efficiency and of effectiveness but also to allow it
to automatically adapt itself to various uses and to be able to evolve when adding
new elements. A first experiment has been carried out on the generalisation of
housing estates to validate the approach.

Keyword: Generalisation, Procedural Knowledge Revision, Machine Learning,
Agent Paradigm.

1 Introduction

The generalisation automation is a complex problem, which was in the centre of numerous
research works in the recent years. Some of these works try to solve it by a local, step by step
and knowledge-based approach (Brassel & Weibel, 1988; Beard 1991; McMaster & Shea,
1992).

The work presented in this paper takes for framework models based on this approach, which
used the agent paradigm (Ruas, 1999; Duchéne, 2004).

The objective of our work is to propose methods to tune and to revise automatically, by the
means of experiments and without the intervention of generalisation experts, the procedural
knowledge contained in this kind of model. The interest of this revision is (a) to get the most
effective (quality of the results) and most efficient (quickness to get the results) knowledge as
possible from a good but not perfect knowledge set, (b) allow the knowledge to evolve when
adding new elements (i.e. algorithms) in the system.

In part 2, we present the context in which our work takes place and its objective. We give in
particular a short and non-exhaustive state-of-the-art of the use of the machine learning
techniques within the context of generalisation. Then, we present the AGENT generalisation
model for which our approach is dedicated. Part 3 is devoted to the presentation of our
approach. Part 4 describes the first application that we carried out as well as its results. Part 5
concludes and presents the future works.

2 Context and objective

2.1 Generalisation and machine learning

The automation of generalisation processes requires the introduction of much knowledge, e.g.
the choice of actions to apply to a geographical object. This knowledge can be acquired
thanks to experts of the domain. Collecting and formalizing the knowledge is a problem
known as the “bottleneck of the acquisition of knowledge”. This problem was indeed
identified within the field of the automation of the generalisation (Rieger & Coulson, 1993;
Weibel et al., 1995; Kilpeldinen, 2000).

One of the approaches to face and to widen the bottleneck is to use the machine learning
techniques. Several works have already used machine learning in the context of generalisation
(Weibel et al., 1995; Musticre, 2001; Mustiére & Ruas, 2004). The use of such techniques
requires solving two kinds of difficulties (Ruas et al., 2006).

The first one concerns the choices of the knowledge to learn as well as its formalization
(Mustiere & Ruas, 2004). These choices appear capital for the quality of the results that it is
possible to obtain.

The second difficulty is related to the collection of examples (Mustiere, 2001; Ruas &
Holzapfel, 2003). It is often fastidious and problematic to build learning sets from examples
labelled by experts. To face this difficulty, a possible approach is to integrate directly in the
GIS an environment facilitating the collection of examples as well as their analysis (Duchéne
et al., 2005). Another approach to solve this problem is to directly acquire the examples by the
means of experimentations without passing through experts. Two series of works illustrate
this approach. They take two different systems of generalisation as a framework, which are
both based on the exploration of search trees by tests/errors in order to determine the best
sequence of actions to apply. These works seek to analyse previous generalisations to deduce
knowledge on the choice of the actions to apply for a given state. (Burghardt & Neun, 2006)
use the previous experiments to build this type of knowledge in the form of a case base.
(Dyévre, 2005; Ruas et al., 2006) seek to acquire this knowledge in the form of rules. The
advantage of a rules based representation is to be directly interpretable. This latter approach,
dedicated to the AGENT generalisation model (Ruas 1999; Barrault et al., 2001; Regnauld,
2001 described in 2.2), is based on the analysis of the execution logs to learn new rules.
Experiments were carried out for the generalisation of buildings.

Our approach of automatic acquisition of procedural knowledge is in the continuity of the
latter approach and it also takes for framework the AGENT generalisation model.

2.2 The AGENT model

The AGENT generalisation model, used in the AGENT European Project (Lamy et al., 1999;
Barrault et al., 2001), originates in (Ruas 1999). In this model, geographical objects (roads,
buildings, etc) are modelled by agents.

(Weiss, 1999, page 2) defines the agents as “/...] autonomous, computational entities that can
be viewed as perceiving their environment through sensors and acting upon their environment
through effectors. [...]. Agents pursue goals or carry out tasks in order to meet their design
objectives [...]”.

The geographical agents manage their own generalisation, choosing and applying
generalisation algorithms to themselves.

In the model, two types of agents are considered:

* The micro agents, which represent the single geographical objects (building,
section of road, etc)

* The meso agents, which represent groups of geographical objects. A meso agent
can be composed of micro agents (a housing estate composed of buildings) as well
as of others meso agents (a district composed of housing estates).

This results in a hierarchical organisation. The agents of higher level will trigger
off the generalisation of their sub-agents.

The generalisation of the agents (micro and meso) is guided by a set of constraints that
translate the specifications of the desired cartographic product. An example of constraint is,
for a building agent, to be sufficiently big to be readable. Each constraint related to an agent is
modelled as an object associated with this agent. The constraints also have the role of
proposing to their associated agent, for each state, a list of plans (one or more actions) to
apply. For example, if the size constraint of a building assesses that the agent is too small, it
will propose a scaling action to it. Each constraint carries the following attributes:

* Goal value: translates the specifications of the desired product.

* Current value: translates the current state of the constraint. This value is
calculated for each state.

+ Satisfaction: reflects the satisfaction degree of the constraint. This integer is
calculated for each state from the current value and from the goal value. It is
marked out of 10 (1 = not satisfied at all, 10 = perfectly satisfied).

* Priority: reflects the emergency of treatment of a constraint. The higher the
priority of the constraint will be, the more its plans will be applied in priority. It is
marked out of 5 (1 = not urgent, 5 = very urgent).

+ Importance: corresponds to the importance for the final result that this constraint
is satisfied. It is marked out of 5 (1 = not important, 5 = very important). This
value is not correlated with the priority. Sometimes, a constraint absolutely needs
to be satisfied, and thus has a high importance, but in order to achieve the optimal
generalisation, plans proposed by other constraints have to be applied before the
plans of this constraint.

Activate

[Characterize and Evaluate]

v

[Ask for plans from its constraints]4

No more
plans to apply, *
thus backtrack . .
Select the best plan and apply it]4* Valid State,
thus store state
Initial State and Re-Evaluate Invalid State,
No more thus backtrack
plans to apply Perfect Valid

v
Passive

Figure 1 — Simplified view of the actions cycle

To satisfy its constraints as well as possible, a geographical agent carries out cycles of actions
(figure 1) during which it tests different plans proposed by its constraints in order to reach a
perfect state (where all of its constraints are perfectly satisfied) or at least the best possible
state. The actions cycle results in a depth-first search exploration of a search tree. Figure 2
gives an example of the obtained tree for the generalisation of a building from 1 m resolution
DB to 1:25 000. The passage from a state to another corresponds to the application by the
agent of one of the plans suggested by at least one of its constraints.

O Valid State
@ Invalid State

QO Best State

Enlarging to rectangle Scaling

Lk

Simplifying to rectangle

Scaling
Generalisation '
1:15000— 1:50000
> Squaring
Squaring

Figure 2 — Example of a search tree for a building
3 Proposed Approach for the knowledge revision

3.1 General approach

Just like the approach presented by (Dyevre, 2005; Ruas et al., 2006), our general approach is
based on three stages (figure 3):

+ Exploration stage: consists in logging the process while it generalises a great
number of geographical objects. During this phase, the process uses the procedural
knowledge initially contained in the system. The logs contain the whole
information related to successes/failures of the various procedural knowledge of
the system.

* Analysis stage: consists in analysing the logs obtained during the previous stage
and in deducing new knowledge from it.

+ Exploiting stage: consists in testing the system with the new knowledge. If the
result obtained at this stage, is not good enough, it is possible to go back to the
two first stages in order to learn better knowledge.

Generate logs by
generalising
geographical agents

d

Build learning sets by Learn new knowledge
analysing the logs |:> from the learning sets

ooz B-o-o-o-oocC

l Test the system with Integrate the new Exploiting I
I its new knowledge <:| knowledge in the stage
system

——_—_—_—_—_—_—__/

Figure 3 — General approach

3.2 Problematic

Applying this methodology for the revision of the procedural knowledge of the AGENT
model arises some questions.

Firstly, what should be logged in order to be able to analyse the process? This question joins
the problem arising by (Mustiére & Ruas, 2004). The first step is to precisely define the
pieces of knowledge that we wish to acquire. In our case, we are interested in all procedural
knowledge that concerns the exploration of the search tree, e.g. the choice of the actions to
apply for a given states or the validity of a state. The objective is to find the best possible state
by the quickest way (to well guide the agent in its choices applying actions) and to limit the
number of useless states (to prune the tree). For each pieces of knowledge that we seek to
acquire, it is necessary to determine the elements that will be used as a basis for the learning.
The most important point, which also belongs to the problems rose by (Mustiere & Ruas,
2004), is the definition of the description language of the examples and particularly the state
characterisation of the search tree. It is necessary to get a representation language rich enough
to be able to correctly describe the states and to avoid the noises of description. At the same
time, this representation language should not be too wide in order to avoid the explosion of
the size of the hypothesis space, i.e. the total number of rules that can be derived from the
examples description. It would indeed degrade the result of the learning. In our case, to
characterize a state, we will take the satisfaction of its constraints. These values are integers
ranging between 0 and 10. They allow a correct characterisation of the agent’s state even if
this characterisation is not complete. The quality of this characterisation directly depends on
the considered constraints. If some descriptive aspects of the state of the agents are not
covered by the constraints, the quality of the learnt knowledge might not be ensured.

Another question to consider is the choice of the learning method. We should in particular
choose the type of algorithm to use for the learning. We are in the case of a supervised
learning because we have labelled examples that are examples described in the form of
attributes/label, the attributes describing the characteristics of the example (its state) and the
label, the example class. The analysis a posteriori of the system execution logs allows us to
build sets of labelled examples. For example, we can determine by analysing the search tree

obtained from the generalisation of an object, the best algorithm to use for some states of the
tree.

We wish to be able to validate the learnt knowledge by generalisation experts. An advantage
to get an interpretable predictive model is to bring useful knowledge on generalisation itself.
The simplest techniques to carry out this learning are the techniques of symbolic learning
such as the techniques based on decision trees induction.

There are no simple rules to help to choose a machine-learning algorithm particularly fit to a
learning problem. Therefore, we will not seek to test several learning algorithms. We will just
use the well-established algorithm C4.5 (Quinlan, 1993) that builds decision trees, which are
easily translatable into rules.

3.3 Knowledge to acquire

The knowledge we seek to acquire can be divided into two groups: those related to the way
the search is explored (for a given state, the order in which the action are tried) and those
related to the pruning of the search tree.

3.3.1 Priority of the constraints

Two factors are taken into account in the AGENT model for the order assigned by the agent
to the plans proposed by its constraints for a given state:
1 The priority of the constraint which proposes the plan. The higher the priority, the more
the plans it proposed is tested in priority.
2 If ever a constraint proposes several plans, the order is determined by the weight which
is attributed for each plan. The higher the weight, the more the plan would be tested in
priority.

Thus, we can acquire two kinds of knowledge: the priority of each constraint for a given state
and the weight of each plan. In this paper, we only develop the first one.

The solution we propose for the determination of the constraints priorities is that each
constraint learns a rules base saying if it should or not be considered as having priority for a
given state, ie if the constraint has the highest priority compared to the others ones or not.
Each learned rule has a calculated confidence rate according to the successes/failures that the
rule met on the training set.

The rules are used as follows during the exploiting phase: when an agent is in a given state, it
checks each constraint. Among the constraints that declare themselves as having priority, the
agent chooses the constraint whose checked rules have the highest confidence rate. As a
consequence, the plans of this constraint will be tried first.

Example
In the following example, the satisfaction of a constraint C; will be noted S(C1), and the
confidence rate, CR.

If an agent A has two constraints C; and C, that have computed the followings rules bases for
their priority:

* Rules for Cy: if S(C;) > 4 and S(C,) < 3 then priority with CR = 80%

* Rules for C;: if S(C;) < 10 then priority with CR = 75%

If A is in the following state:
« State 1 : S(Cy) =7, S(C,) = 8: only the C, rule is checked, then C2 is given priority
(and therefore the plans it proposed are tried first)

» State 2 : S(C)) =8, S(C;) = 2: the C1 rule is checked and CR = 80%. The C; rule
is checked and CR = 75%. Then, as the CR of the C, rule is higher than the CR of
the C, rule then C1 is given priority (and therefore the plans it proposed are tried
first)

The construction of the learning set is done by the analysis of the search trees and more
particularly by successes/failures that each plan suggested by the constraints encounters. One
learning set by constraint is built. The algorithm of construction of a learning set is the
following:

For all of the states E of the tree do:
If E belongs to the best path do:
For all of the states Eg,.. successors of E do:
If Egu.. belongs to the best path do:
Add training example: Egu.., Priority

Else do:
Add training example: Eg,.., Non-priority
End if
End for
End if
End for

Each state belonging to the best path (the states sequence starting from the initial state and
ending with the best state) is analysed. If, from one of these states, one of the plans suggested
by a constraint leads to another state belonging to the best path, the constraint is considered as
having priority. If all the plans suggested by the constraint lead to useless states (states that
does not belong to the best path), the constraint is considered as not having priority. Figure 4
gives an example of obtained learning sets.

O Valid State Constraint C;: propose action 1
@ Invalid State Constraint C»: propose action 2
O Best State

Action 1 Action 2 Learning Set:

o Priority of C; :
Action 2 = State 1, Priority
= State 2, Non priority

Action 1 Action 2 Action 1

Action 1 o Priority of C; :
= State 1, Non Priority

= State 2, Priority

Figure 4 — Example of learning set for the priority of the constraints

3.3.2 Pruning of the search tree

We seek to prune the tree in order to improve the efficiency of the process. The tree can be
pruned either by a states validity criterion, or by a criterion to exit from the search tree. An
invalid state is a state from which the system does not continue to explore in depth the search

tree (even if some constraints are not satisfied and propose actions). To exit the actions cycle
means that the system stops to search a better state than the best one already found.

3.3.2.1 Validity Criterion

We first try to learn a states validity criterion. The basic criterion that we choose to integrate
in the system is that a state is valid if it is not similar, from constraints satisfaction point of
view, to an already visited state. This criterion has been chosen in order to avoid the loops and
to get the most expanded trees. Indeed, for our knowledge revision, it is important to learn as
much as possible from the generalisation made during the exploration stage. It is possible to
add state validity rules to prune the trees more strongly. We will thus learn the concept of
validity for a state. The algorithm of construction of the learning set is the following:

For all of the states E of the tree do:
If E belongs to the best path then do:
Add training example: E, Valid
For all of the states Eg,.. successors of E do:
If Egy.. does not belong to the best path then do:
Add training example: Eg..., Invalid
End if
End for
End if
End for

In other words, a state is valid if it belongs to the best path. It is not valid if it is useless and its
father belongs to the best path. Figure 5 gives an example of the learning set we can obtain.

Constraint C,: propose action 1

O Valid State Constraint C»: propose action 2
@ Invalid State
O Best State Learning Set:

Action 1 Action 2

o State validity :
= State 1, Valid
= State 2, Valid
= State 3, Invalid
= State 4, Valid
= State 6, Invalid

Action 1 Action 2 Action 1 Action 2

Action 1

o Stopping criterion :
= State 1, Continue
= State 2, Continue
= State 4, Stop

Figure 5 — Example of learning set for pruning

3.3.2.2 Stopping Criterion

As mentioned above, the second thing we try to learn in order to prune the trees is a less
restrictive stopping criterion. The basic criterion is that the actions cycle stops when a perfect

state is reached (or when all the possible actions were tested). Now, it appears in certain
configurations, that it is useless for the system to continue to explore the tree because it is not
possible to find a better state than the ones already found. We will learn these configurations
in the form of states for which it is useless to continue to explore the search tree. For that, we
know that for the states belonging to the best path, it is necessary to continue to explore the
search tree as long as the best state is not reached, but once this one reached, it is useless to
continue to explore the tree. The algorithm of construction of the learning set is the following:

For all of the states E of the tree do:
If E belongs to the best path then do:
If E is the best state then do:
Add training example: E, Stop
Else do:
Add training example: E, Continue
End if
End if
End for

Figure 5 gives an example of learning set, which we can build.

3.4 Conclusion for the revision process

Part 3 describes our approach of knowledge revision. The approach is based on tree stages :
the exploring stage, which consists in logging the process while it generalises a great number
of geographical objects, the analysis stage which consists in analysing the logs obtained
during the previous stage and in deducing new knowledge from it and the exploiting stage
which consists in testing the system with the new knowledge.

Tree kinds of knowledge are learnt during the analysis stage : the priority of the constraints,
the validity criterion and the stopping criterion. We use the C4.5 algorithm that builds
decision trees, which are easily translatable into rules, to learn this knowledge from the
learning set. The figure 6 summarizes the process.

Now that our approach is described, the next part deals with its applications to the
cartographic generalisation of housing estates.

Generate logs by
generalising
geographical agents

L

Build learning sets for Build a learning set for Build learning sets for
the priority of the the validity criterion the stopping criterion
constraints by by analysing the logs by analysing the logs

analysing the logs

Apply the C4.5 Apply the C4.5 Apply the C4.5
algorithm on the algorithm on the algorithm on the
learning set learning set learning set
Learn for cach Learn new stopping Learn new validity

) rules
constraint, new rules

priority rules with a

confidence rate for
each rule ; :;
/

Integrate the new

knowledge in the
system Exploiting

l
l
stage
| g
l
i Test the system with
its new knowledge

- es - e ..

~_—_—_—_—_—_—_—_—__/

Figure 6 — Processing scheme

4 Case Study: the generalisation of housing estate

We present in this part, an application of our approach described in part 3, to the cartographic
generalisation of the housing estates.

4.1 Application case

We tested our approach of procedural knowledge revision on the generalisation housing estate
agents. A housing estate agent is a meso agent composed of various micro agents (buildings,
roads, rivers, etc), that matches the following conditions:

* To have a non strong density of buildings

» To contain at least two buildings

* To have an area lower than 300 m*

* To be composed of buildings of relatively similar size (standard deviation between

area, lower than 70 m?)

10

Constraints:

o bldg satisf: Satisfaction of buildings
= Plan : generalisation of buildings
* Priority =5, Importance = 5

o prox_bldg : proximity between buildings
* Plan : aggregation of buildings
= Priority =5 , Importance = 4

o prox_road_bldg : proximity between buildings and
proximity between roads and buildings
= Plan : removal and displacement of buildings
= Priority =5, Importance = 4

o buildings nb : preservation of a minimal number of
buildings
= No Plan
» Priority =5, Importance = 4

Figure 7 — Housing estate constraints

The reference scale of the initial data is approximately 1:15 000, the target scale is 1:50 000.
The agents are guided by four constraints (figure 7) for which we have defined static priorities
all equals. Thus, the plans application order depends only on the constraints satisfaction. The
lower the satisfaction of a constraint, the more the plans of this constraint will be applied in
priority. Most of the time, choosing the same priority for all of the constraints is a correct
choice even if it is rarely the best choice.

The learning was carried from the generalisation of 40 pieces of housing estate taken in the
surroundings of the town of Orthez (South-west of France).

4.2 Learntrules

We note S(Ci) to indicate the satisfaction of the constraint Ci and CR to indicate its
confidence rate. The rules obtained by the C4.5 algorithm are the detailed hereafter.

4.2.1 Rules of choice of the priority constraint

In this part, rules for the constraints priority were learnt . The learning process for this
knowledge is described part 3.3.1.

* Constraint prox road bldg:

Rules Confidence
Rate
IF (S(bldg_satisf) > 7) THEN priority CR=92%
IF (S(bldg_satisf) < 7) AND (S(prox_road_bldg) < 5) THEN priority CR=83%

(S(
(S(
IF (S(bldg_satisf) < 7) AND (S(prox_road_bldg) > 6) AND (S(prox_bldg) = 8) THEN priority | CR =71%
IF (S(bldg_satisf) = 7) AND (S(prox_road_bldg) = 7) AND (S(prox_bldg) > 8) THEN priority | CR =86%

* Constraint bldg_satisf:

Rules Confidence
Rate

IF (S(bldg_satisf) < 8) AND (S(prox_road_bldg) > 4) AND (S(prox_bldg) > 5) THEN priority | CR=91%
IF (S(bldg_satisf) > 8) AND (S(prox_road_bldg) > 7) AND (S(prox_bldg) > 5) THEN priority | CR =93%

11

» Constraint prox_bldg:

Rules Confidence
Rate
IF (S(prox_bldg) < 7) THEN priority CR=54%
IF (S(bldg_satisf) > 7) AND (S(prox_bldg) > 7) THEN priority CR=67%

According to these rules, the plan from the constraint bldg_satist will be applied in priority in
most of the cases. This plan consists in triggering the generalisation of buildings of the
housing estate. In the very large majority of cases, this plan is carried out only once by path of
the tree. We can notice that for a non-dense group of buildings like our housing estates, the
fact that the buildings generalisation should be performed in priority had already been noticed
by (Duchéne, 2004).

The only case when the plans of the constraint bldg_satisf will not be triggered in priority is
when the buildings are already well-generalised and there are few conflicts of proximity
between buildings. In this case, the plans of the road/building proximity constraint will be
applied in priority.

Once the building individual generalisation of the buildings has been performed, the next
stage will be a phase of displacement and removal of buildings. Indeed, the buildings
generalisation of a scale of 1:50 000 generally involves their scaling what has often for
consequences some overlapping between buildings and between roads and buildings. It is thus
often necessary to resort to actions solving this kind of problems.

We can notice that the plan suggested by the constraint prox bldg (aggregation) which
theoretically could also help to solve this problem are in general never suggested in the learnt
rules. The system seems to largely prefer the plans suggested by the constraint
prox_road bldg.

4.2.2 Validity criterion for a state

In this part, a rule for the validity criterion was learnt. The learning process for this
knowledge is described part 3.3.2.1. The rule obtained is the following:

Rules

IF (S(bldg_satisf) < 9) AND (S(buildings_nb) < 8) THEN invalid state

The interpretation of this rule is that the only case when the constraint will consider a state as
invalid is the case where the buildings were not generalised yet or were badly generalised, and
where at the same time too many buildings have already been removed. This rule seems to be
pertinent. Indeed, generalising another time the buildings could involve superposition and
conflicts of proximity, and the system cannot allow the agent to remove any more buildings
because of the risk to see the satisfaction of the constraint buildings nb decreasing even
more.

4.2.3 Stopping criterion for the actions cycle

In this part, a rule for the stopping criterion was learnt. The learning process for this
knowledge is described part 3.3.2.2. The rule obtained is the following:

Rules

IF (S(bldg_satisf) = 10) AND (S(prox_road_bldg) = 10) THEN stop the actions cycle

12

According to this rule, the system considers that it is useless to continue to explore the tree if
the constraints bldg_satisf and prox road bldg are perfectly satisfied.

To justify that, we can notice that these two constraints are the only ones which really propose
effective plans. Moreover, once their maximum satisfaction is reached, the constraints do not
propose any more plans. Without this rule, even if the system reaches a state that would
perfectly satisfy this two constraints, it will continue to explore this path and/or others paths
in the tree even if the chance of finding a better state is very small.

4.3 Tests of learnt knowledge

The process was tested with initial knowledge (with basic validity and stop criteria described
in part 3.3.2) and then with the newly learnt knowledge on 40 pieces of housing estate taken
in a different zone from the one used for the learning.

The basic criterion for the state validity is that a state is valid if it is not similar, from
constraints satisfaction point of view, to an already visited state. The basic criterion is that the
actions cycle stops when a perfect state is reached (or when all the possible actions were
tested).

The results show an improvement at the same time in terms of efficiency (number of explored
states) and of effectiveness (the mean satisfaction obtained by housing estate) (figure 8). The
mean number of visited states by housing estate was divided by approximately 5 while the
quality of the obtained result slightly improved.

| Gain in effectiveness Mean | Gainin efficiency |
Mean Number of
Satisfaction States
A
9,8 100
9,75
80
9,7
60
9,65
40
9,6
20
9,55
9,5 H
OlInitial knowledge OLearnt knowledge

Figure 8 — Gains in effectiveness and efficiency: comparison results between the initial and
the learnt knowledge

13

We can observe on figure 9 that the learnt knowledge allows the system to solve some
problems of proximity and avoid the problems of large agglomerates generation that are
present with the initial knowledge. The problems are particularly visible on figure 9 where the
results obtained with the initial knowledge are quite bad.

This application shows that it is possible to distinctly improve the knowledge included in a
generalisation system by an introspective process, and thus to validate our general approach.

Before generalisation

Generalisation with
initial knowledge

Generalisation with
new knowledge

O Problem of proximity Problem of large agglomerate

Figure 9 — Example of results obtained with initial/new knowledge, Area 1

14

Generalisation with Generalisation with
initial knowledge new knowledge

Before generalisation

Problem of large agglomerate

Figure 10 — Example of results obtained with initial/new knowledge, Area 2

However, it also arises a problem of this system: the satisfaction indicator is not very good. In
fact, some of the results obtained with the initial knowledge are far from being good (in
particular, the one obtained in the figure 10) but the mean satisfaction we obtained for the
generalisation is very high (close to 9,67). It is true that the problematic generalisations are
just a small part of the whole generalisations and that most of the generalisations are good, but
the satisfaction must be a better indicator of the cartographic results. It is even more
problematic that our learning approach is based on this indicator (by the means of the best
state). A better indicator will help the system to learn better.

5 Conclusion and future works

In this paper, we underlined the interest of integrating of an automatic module of knowledge
revision module inside a generalisation system based on trials and backtracks.

We proposed a method for procedural knowledge revision based on introspection and
machine learning techniques. Within the framework of the AGENT generalisation model, we
developed various methods and algorithms allowing acquiring knowledge concerning the
order of the applied plans but also concerning the pruning of the built search trees.
Application on the generalisation of the housing estate at 1:50 000 validates our general
approach and proves the gains in terms of efficiency and effectiveness that it can bring.

This application also arises the problem of the “satisfaction” indicator used to describe the
cartographic quality of the result. Our learning approach being based on it, this indicator must
be reliable. Further work must be carried out to improve this indicator

We did not seek to acquire in the work presented in this paper the piece of knowledge relating
to the choice of the plans suggested by each constraint as well as their associated weight.
Further learning methods have to be developed in order to revise it.

Until here, we have just tried, from knowledge initially contained in this system, to acquire
new knowledge that we substituted to the old. One of the goals is now to be able to carry out a
real knowledge revision, i.e. identify with precision the pieces of knowledge that are bad and
to revise only this part of knowledge.

15

Moving on this kind of precise revision requires having a common formalism for the
knowledge expression, as well as structures of storage allowing managing them in a
completely automatic way. Thus a work of knowledge modelling is currently being
undertaken.

References

BARRAULT M. REGNAULD N., DUCHENE C., HAIRE K.,, BAEIJS C., DEMAZEAU Y.,
HARDY P., MACKANESS W., RUAS A. & WEIBEL R. (2001). Integrating multi-agent,
object-oriented, and algorithmic techniques for improved automated map generalisation.
20th ICC conference. Vol. 3. p. 2100-2116.

BEARD K. (1991). Constraints on rules formation, map generalization, Buttenfield B. &
McMaster R. (ed), Longman, p. 121-135.

BRASSEL K. & WEIBEL R. (1988). A review and conceptual framework of automated map
generalization. International Journal of Geographical Information Systems. vol. 2, n°3, p.
229-244.

BURGHARDT D. & NEUN M. (2006). Automated sequencing of generalisation services
based on collaborative filtering. 4th International Conference GlScience.

DUCHENE C. (2004). Généralisation cartographique par agents communicants : le mod¢ele
CartACom, These de doctorat, université Paris VI et laboratoire COGIT.

DUCHENE C., Dadou D. & Ruas A. (2005), Helping the capture of expert knowledge to
support generalisation. ICA Workshop on generalization and multiple representation, La
Corona, Spain.

DYEVRE A. (2005). Analyse d’un processus de généralisation cartographique a 1’aide
d’apprentissage artificiel. Rapport de Master 2, Université Paris IV et Laboratoire COGIT.

KILPELAINEN T. (2000), Knowledge Acquisition for Generalisation Rules. Cartography
and Geographic Information Science, vol. 27, n°1, p. 41-50.

MCMASTER R.B. & SHEA K.S. (1992). Generalization in Digital Cartography. Assocoation
of American Geographers, Washington.

MUSTIERE S. (2001). Apprentissage supervisé pour la généralisation cartographique. Thése
de doctorat, université Paris VI, laboratoire COGIT.

MUSTIERE S. & DUCHENE C. (2001). Comparison of different approaches to combine
road generalisation algorithms: GALBE, AGENT and CartoLearn. 4¢th ICA Workshop on
generalisation.

MUSTIERE S. & RUAS A. (2004), Vers une réconciliation des experts et des systémes -
Expériences d’utilisation de méthodes d’apprentissage artificiel pour la généralisation et
I’intégration des bases de données géographiques. Journées Cassini.

QUINLAN, J. R. (1993), C4.5 Programs for Machine Learning, CA: Morgan Kaufimann, San
Mateo.

REGNAULD N. (2001), Constraint based mechanism to achieve automatic generalisation
using an agent modelling, 9" GISRUK conference.

RIEGER M. & COULSON M. (1993). Consensus or confusion : cartographers’ knowledge of
generalization. Cartographica. vol. 30. n°2-3. pp. 69-80.

RUAS A. (1999). Modele de généralisation de données géographiques a base de contraintes et
d'autonomie. These de doctorat, université de Marne La Vallée.

RUAS A. & HOLZAPFEL F. (2003). Automatic characterisation of building alignments by
means of expert knowledge. 21th ICC conference. p. 1604-1616.

RUAS A., DYEVRE A., DUCHENE C. & TAILLANDIER P. (2006). Methods for
improving and updating the knowledge of a generalization system, Autocarto. Portland
USA.

16

WEIBEL R., KELLER S. & REICHENBACHER T. (1995). Overcoming the Knowledge
Acquisition Bottleneck in Map Generalization : the Role of Interactive Systems and
Computational Intelligence. Proceeding of the 2" COSIT conference. p. 139-156.

WEISS G. (1999). Multiagent Systems. A modern Approach to Distributed Artificial
Intelligence. The MIT Press.

17

