Moscow, 3.8.2007

EFFICIENT AREA AGGREGATION BY COMBINATION OF DIFFERENT TECHNIQUES

Jan-Henrik Haunert

Institut für Kartographie und Geoinformatik Leibniz Universität Hannover

Outline

1. Introduction

- 2. Problem definition
- 3. Results by mixed-integer programming
- 4. Problem decomposition
- 5. Algorithm
- 6. Results

Areas in topographic databases (e.g. German ATKIS)

- commonly define a planar subdivision.
- are often collected independently for different scales.

Sample from ATKIS DLM50

Automatic generalisation

- enables to collect data sets more efficiently.
- requires algorithms for different problems (area collapse, aggregation, line simplification).

Generalisation must satisfy constraints defined in specifications:

🕲 ATKIS-Objektartenkatalog - Mozilla Firefox			
Datei Bearbeiten Ansicht Chronik Le	ezeichen E <u>x</u> tras <u>H</u> ilfe	() ()	
🗢 • 🔶 • 💽 😣 🏠 🗈	http://www.atkis.de/dstinfo/dstinfo.dst_start?dst_oar=4107&inf_sprache=dr	• • G •	
 <u>3100 Straßenverkehr</u> <u>3200 Schienenverkehr</u> <u>3300 Flugverkehr</u> <u>3400 Schiffsverkehr</u> <u>3500 Anlagen und Bauwerke für</u> <u>Verkehr, Transport und</u> <u>Kommunikation</u> 	ATKIS-Objektartenkatalog (ATKIS-OK) Teil D1: ATKIS-OK 250 Nr.: Objektbereich 4000 Vegetation Nr.: Objektart	Nr.: Objektgruppe 4100 Vegetationsflächen	
4000 Vegetation - 4100 Vegetationsflächen 4101 Ackerland 4102 Grünland	4107 Wald, Forst	.000 Datenblatt	
<u>4103 Gartenland</u> <u>4104 Heide</u> <u>4105 Moor, Moos</u> <u>4106 Sumpf, Ried</u> <u>4107 Wald, Forst</u> <u>4108 Gehölz</u>	Allgemeine Angaben zur Objektart Definition Fläche, die mit Forstpflanzen (Waldbäume und Waldsträucher)) bestockt ist.	
4109 Sonderkultur 4110 Brachland 4111 Nasser Boden 4120 Vegetationslose Fläche 4198 Schneise	<i>Erfassungskriterium</i> - Fläche > 10 ha		
4199 Fläche, z.Z. unbestimmbar - 4200 Bäume und Büsche 5000 Gewässer - 5100 Wasserflächen - 5200 Besondere Objekte in Gewässern - - 5300 Einrichtungen und Bauwerke	Erfaßt werden auch - die mit Waldsträuchern und einzelnen Waldbäumen bestandenen, nicht forstwirtschaftlich genutzten Flächen, die der Objektart 'Gehölz' des OK 25 sowie - öffentliche und nichtöffentliche Parks, die der Objektart 'Grünland' des OK 25 zuzuordnen wären. Lichtungen < 4 ha werden als zum Objekt gehörig betrachtet. Objekttyp		
on Cettocom	 flächenförmig 	•	

Existing aggregation algorithm (vanOosterom1995): a =smallest area in data set while a is smaller than required for target scale **do** merge a with best compatible neighbour a =smallest area in data set

end while

Preprocessing: Input

Preprocessing: Result

Graph representation of a planar subdivision

Graph representation of a planar subdivision

A planar subdivision is represented by

- \bullet Adjacency graph $G(V\!,E)$
- Node weights $w: V \to \mathbb{R}^+$ (area sizes)
- Node colours $\gamma: V \to \Gamma$ (land cover classes)

Define new colours $\gamma': V \to \Gamma$ and a partition $P = \{V_1, V_2, \dots, V_n\}$ of V,

Define new colours $\gamma' : V \to \Gamma$ and a partition $P = \{V_1, V_2, \dots, V_n\}$ of V, such that for each aggregate $V_i \in P$

- the induced graph is connected,
- \bullet all contained nodes have the same new colour γ_i' ,
- at least one contained node keeps its original colour, and
- the total weight of V_i is at least $\theta(\gamma'_i)$,

with $\theta : \Gamma \to \mathbb{R}^+$ defining the area thresholds for different colours.

Objective:

1. Change land cover classes as little as possible.

Minimise $\sum_{v \in V} w(v) \cdot d(\gamma(v), \gamma'(v))$,

with $d: \Gamma^2 \to \mathbb{R}^+_0$ defining the similarity of land cover classes.

Objective:

2. Geometrically compact regions are preferred.

Minimise $\sum_{V_i \in P} c(V_i, \gamma'_i)$, with $c : 2^V \times \Gamma \rightarrow \mathbb{R}^+_0$ defining a cost for the noncompactness of an aggregate.

Definition:

Each aggregate has a **centre**, which defines the colour of the aggregate and a central reference point, which is used to measure compactness.

Each node is a potential centre.

Objective:

1. & 2. combined

 $\begin{array}{l} \text{Minimise } s \cdot \sum_{v \in V} w(v) \cdot d(\gamma(v), \gamma'(v)) + (1-s) \cdot \sum_{V_i \in P} c(V_i, \gamma'_i), \\ \text{with } s \in \mathbb{R}, 0 < s < 1. \end{array}$

Complexity:

The aggregation problem ist NP-hard, even if

- the map has only two colours,
- the area threshold is the same for all colours,
- the distances between each two different colours are the same,
- the objective of compactness is ignored, and
- the weights of all nodes are equal.

Motivation for mixed-integer programming and heuristic methods

3. Results by mixed-integer programming

- Performance is not appropriate for cartographic production.
- Introduce heuristics, which allow
 - other MIP formulations
 - elimination of some variables

3. Results by mixed-integer programming

Results

exact MIP

nodes	time	objective
30	90.2s	1.73
40	12.7h	1.67
50	20.0h	2.15

MIP with heuristics

nodestimeobjective300.01s2.41400.03s1.82500.45s2.3440022min19.15

Iterative algorithm

nodes	objective
30	5.51
40	5.35
50	6.35
400	29.04

MIP with heuristics

- produces near-optimal solutions and
- solves instance with 400 areas in reasonable time.

Assumption for further approach:

We can solve instances with k or less nodes (not restricted to any specific technique like mixed-integer programming).

Approach based on a heuristic

- Assumption: Large areas can be fixed as centres without loosing good solutions.
- In particular this can be done for nodes $v \in V$ with $w(v) > \theta(\gamma(v))$, i.e., areas that are sufficiently large for the target scale.

Example:

thresholds $\theta(\gamma) = 1$ for all $\gamma \in \Gamma$

Approach based on a heuristic

- Assumption: Large areas can be fixed as centres without loosing good solutions.
- In particular this can be done for nodes $v \in V$ with $w(v) > \theta(\gamma(v))$, i.e., areas that are sufficiently large for the target scale.
- When fixing nodes with $w(v) \geq \theta(\gamma(v))$

as centres, the aggregation problem can be solved independently for each connected component of the graph induced by the other nodes.

Meaning for mixed-integer programming:

- Constraints have general form $A \cdot x \leq b$
- If the graph has two connected components, the matrix *A* will has form $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$

Just theory?

ATKIS DLM 1:50.000 BUCHHOLZ IN DER NORDHEIDE 5537 polygons (after preprocessing) $20 \times 20 \text{ km}^2$

ATKIS DLM 1:50.000 BUCHHOLZ IN DER NORDHEIDE 5537 polygons (after preprocessing) $20 \times 20 \text{ km}^2$

Areas of sufficient size for scale 1:250.000 (red):

7% of all polygons 49% of area coverage

- 145 independent problem instances
- 1 big component with 76% of all polygons
- all other instances can be solved with heuristic MIP ($|V| \le 198$)

Idea:

- Introduce intermediate scales/thresholds
- The number of predefined centres will increase
- The resulting instances will become smaller
- Intermediate scales should only be introduced if needed.
- It needs to be ensured that the instances have size at most *k*.

P = a set of open problem instances, initially empty

a =smallest area in data set

while a is smaller than required for the target scale do

P'= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P' < k then

Remove all instances in P' from P

Create a new instance p comprising all areas in instances P' plus a

P = a set of open problem instances, initially empty

a =smallest area in data set

while a is smaller than required for the target scale do

P'= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P' < k then

Remove all instances in P' from P

Create a new instance p comprising all areas in instances P' plus a

if p contains k areas then

solve p (θ = size of smallest centre in neighbourhood)

else

```
insert p to P
```

end if

else

P = a set of open problem instances, initially empty

a =smallest area in data set

while a is smaller than required for the target scale do

P'= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P' < k then

Remove all instances in P' from P

Create a new instance p comprising all areas in instances P' plus a

if p contains k areas then

solve p (θ = size of smallest centre in neighbourhood)

else

```
insert p to P
```

end if

else

Solve the instance in P' containing most areas ($\theta = w(a)$). Remove this instance from P.

end if

a = smallest area in data set, not contained in instances P

end while

Solve all remaining instances in *P*, applying threshold for target scale.

ATKIS DLM50 Buchholz in der Nordheide

after aggregation, scale 1:250.000, k = 20082 min

Comparison with iterative method:

- -20 % costs for class change
- -2 % costs for non-compact shapes
- -8 % total costs
 5 km

Details

ATKIS DLM50 Buchholz in der Nordheide

after aggregation scale 1:250.000

after line simplification scale 1:250.000

Details

ATKIS DLM50 Buchholz in der Nordheide

after aggregation scale 1:250.000

after line simplification scale 1:250.000

Results for different values of k:

Other benefits:

- Intermediate scales can be used for continuous generalisation
- Further scales need to be interpolated

- Decomposition of problem is useful for incremental updating
- Decomposition allows to process in parallel

Conclusion:

- A new efficient heuristic for area aggregation:
 - -large areas are fixed as centres
 - intermediate scales are introduced
- In terms of class change, the method results in significantly better results than the purely iterative method (-20% cost).
- In terms of compactness only marginal improvements were made.
- The method generalises an existing algorithm for the same problem.
- Decomposition also allows incremental update.
- Intermediate scales can be exploited for continuous generalization.

Moscow, 3.8.2007

EFFICIENT AREA AGGREGATION BY COMBINATION OF DIFFERENT TECHNIQUES

Jan-Henrik Haunert

Institut für Kartographie und Geoinformatik Leibniz Universität Hannover

