EFFICIENT AREA AGGREGATION
BY COMBINATION OF DIFFERENT TECHNIQUES

Jan-Henrik Haunert
Institut für Kartographie und Geoinformatik
Leibniz Universität Hannover
1. Introduction
2. Problem definition
3. Results by mixed-integer programming
4. Problem decomposition
5. Algorithm
6. Results
Areas in topographic databases (e.g. German ATKIS)

- commonly define a planar subdivision.
- are often collected independently for different scales.

Automatic generalisation

- enables to collect data sets more efficiently.
- requires algorithms for different problems (area collapse, aggregation, line simplification).
1. Introduction

Generalisation must satisfy constraints defined in specifications:

- 3100 Straßenverkehr
- 3200 Schienenverkehr
- 3300 Flugverkehr
- 3400 Schiffssverkehr
- 3500 Anlagen und Bauwerke für Verkehr, Transport und Kommunikation

4090 Vegetation
- 4100 Vegetationsflächen
 - 4101 Ackerland
 - 4102 Grünland
 - 4103 Gartenland
 - 4104 Heide
 - 4105 Moos, Moos
 - 4106 Sumpf, Rand
 - 4107 Wald, Forst
 - 4108 Gehölz
 - 4109 Sonderkultur
 - 4110 Bruchland
 - 4111 Nassur Boden
 - 4120 Vegetationslose Fläche
 - 4192 Schwarze Punktarten
 - 4199 Fläche, z. Z. unbestimmbar
 - 4200 Bäume und Büsche

5090 Gewässer
- 5100 Wasserschläfen
- 5200 Besondere Objekte in Gewässern
- 5300 Einrichtungen und Bauwerke in Gewässern
Existing aggregation algorithm (van Oosterom 1995):

\[a = \text{smallest area in data set} \]

\[\text{while } a \text{ is smaller than required for target scale} \]

\[\text{do merge } a \text{ with best compatible neighbour} \]

\[a = \text{smallest area in data set} \]

\[\text{end while} \]
1. Introduction

Preprocessing: Input
1. Introduction
2. Problem definition

Graph representation of a planar subdivision
A planar subdivision is represented by

- Adjacency graph $G(V, E)$
- Node weights $w : V \rightarrow \mathbb{R}^+$ (area sizes)
- Node colours $\gamma : V \rightarrow \Gamma$ (land cover classes)
2. Problem definition

Problem:

Define new colours $\gamma' : V \rightarrow \Gamma$ and a partition $P = \{V_1, V_2, \ldots, V_n\}$ of V, where

$$P = \{\{v_1, v_2, v_4\}, \{v_3, v_5, v_6\}, \{v_7, v_8, v_9\}\}$$
2. Problem definition

Problem:

Define new colours \(\gamma' : V \to \Gamma \) and a partition \(P = \{V_1, V_2, \ldots, V_n\} \) of \(V \), such that for each aggregate \(V_i \in P \)

- the induced graph is connected,
- all contained nodes have the same new colour \(\gamma'_i \),
- at least one contained node keeps its original colour, and
- the total weight of \(V_i \) is at least \(\theta(\gamma'_i) \),

with \(\theta : \Gamma \to \mathbb{R}^+ \) defining the area thresholds for different colours.
2. Problem definition

Objective:

1. Change land cover classes as little as possible.

 Minimise $\sum_{v \in V} w(v) \cdot d(\gamma(v), \gamma'(v))$,

 with $d : \Gamma^2 \rightarrow \mathbb{R}^+_0$ defining the similarity of land cover classes.
2. Problem definition

Objective:

2. Geometrically compact regions are preferred.

\[
\text{Minimise } \sum_{V_i \in P} c(V_i, \gamma_i'),
\]
with \(c : 2^V \times \Gamma \rightarrow \mathbb{R}_0^+ \) defining a cost for the non-compactness of an aggregate.

Definition:
Each aggregate has a **centre**, which defines the colour of the aggregate and a central reference point, which is used to measure compactness.

Each node is a potential centre.
2. Problem definition

Objective:

1. & 2. combined

Minimise \(s \cdot \sum_{v \in V} w(v) \cdot d(\gamma(v), \gamma'(v)) + (1 - s) \cdot \sum_{V_i \in P} c(V_i, \gamma'_i) \),

with \(s \in \mathbb{R}, 0 < s < 1 \).
2. Problem definition

Complexity:

The aggregation problem is NP-hard, even if
– the map has only two colours,
– the area threshold is the same for all colours,
– the distances between each two different colours are the same,
– the objective of compactness is ignored, and
– the weights of all nodes are equal.

Motivation for mixed-integer programming and heuristic methods
• Performance is not appropriate for cartographic production.
• Introduce heuristics, which allow
 – other MIP formulations
 – elimination of some variables
3. Results by mixed-integer programming

Results

<table>
<thead>
<tr>
<th>exact MIP</th>
<th>MIP with heuristics</th>
<th>Iterative algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes</td>
<td>time</td>
<td>objective</td>
</tr>
<tr>
<td>30</td>
<td>90.2s</td>
<td>1.73</td>
</tr>
<tr>
<td>40</td>
<td>12.7h</td>
<td>1.67</td>
</tr>
<tr>
<td>50</td>
<td>20.0h</td>
<td>2.15</td>
</tr>
<tr>
<td>400</td>
<td>22min</td>
<td></td>
</tr>
</tbody>
</table>

MIP with heuristics

- produces near-optimal solutions and
- solves instance with 400 areas in reasonable time.

Assumption for further approach:
We can solve instances with \(k \) or less nodes
(not restricted to any specific technique like mixed-integer programming).
4. Problem decomposition

Approach based on a heuristic

- Assumption: Large areas can be fixed as centres without losing good solutions.
- In particular this can be done for nodes $v \in V$ with $w(v) > \theta(\gamma(v))$, i.e., areas that are sufficiently large for the target scale.

Example:

$$\theta(\gamma) = 1 \text{ for all } \gamma \in \Gamma$$
4. Problem decomposition

Approach based on a heuristic

- Assumption: Large areas can be fixed as centres without losing good solutions.

- In particular this can be done for nodes $v \in V$ with $w(v) > \theta(\gamma(v))$, i.e., areas that are sufficiently large for the target scale.

- When fixing nodes with $w(v) \geq \theta(\gamma(v))$ as centres, the aggregation problem can be solved independently for each connected component of the graph induced by the other nodes.
4. Problem decomposition

Meaning for mixed-integer programming:

- Constraints have general form $A \cdot x \leq b$
- If the graph has two connected components, the matrix A will have form
 \[
 \begin{pmatrix}
 A_1 & 0 \\
 0 & A_2
 \end{pmatrix}
 \]
4. Problem decomposition

Just theory?
4. Problem decomposition

ATKIS DLM 1:50.000
BUCHHOLZ IN DER NORDHEIDE
5537 polygons (after preprocessing)
$20 \times 20 \text{ km}^2$
4. Problem decomposition

ATKIS DLM 1:50.000
BUCHHOLZ IN DER NORDHEIDE
5537 polygons (after preprocessing)
20 × 20 km²

Areas of sufficient size for scale 1:250.000 (red):
7% of all polygons 49% of area coverage
4. Problem decomposition

- 145 independent problem instances
- 1 big component with 76% of all polygons
- all other instances can be solved with heuristic MIP ($|V| \leq 198$)
4. Problem decomposition

Idea:

- Introduce intermediate scales/thresholds
- The number of predefined centres will increase
- The resulting instances will become smaller

- Intermediate scales should only be introduced if needed.
- It needs to be ensured that the instances have size at most k.
5. Algorithm

\(P = \) a set of open problem instances, initially empty
\(a = \) smallest area in data set

while \(a \) is smaller than required for the target scale do

\(P' = \) the set of problem instances in \(P \) containing a neighbour of \(a \)

if total number of areas contained in instances \(P' < k \) then

Remove all instances in \(P' \) from \(P \)
Create a new instance \(p \) comprising all areas in instances \(P' \) plus \(a \)

else
Solve the instance in \(P' \) containing most areas (\(\theta = w(a) \)).
Remove this instance from \(P \).

end if

\(a = \) smallest area in data set, not contained in instances \(P \)

end while

Solve all remaining instances in \(P \), applying threshold for target scale.
5. Algorithm

\[P = \text{a set of open problem instances, initially empty} \]
\[a = \text{smallest area in data set} \]

while \(a \) is smaller than required for the target scale **do**

\[P' = \text{the set of problem instances in } P \text{ containing a neighbour of } a \]

if total number of areas contained in instances \(P' < k \) **then**

Remove all instances in \(P' \) from \(P \)
Create a new instance \(p \) comprising all areas in instances \(P' \) plus \(a \)

if \(p \) contains \(k \) areas **then**

solve \(p \) \((\theta = \text{size of smallest centre in neighbourhood})\)

else

insert \(p \) to \(P \)

end if

else

![Diagram showing the process of the algorithm](image-url)
5. Algorithm

\[P = \text{a set of open problem instances, initially empty} \]
\[a = \text{smallest area in data set} \]

\textbf{while} \ a \ \textbf{is smaller than required for the target scale} \ \textbf{do}

\[P' = \text{the set of problem instances in } P \text{ containing a neighbour of } a \]

\textbf{if} total number of areas contained in instances \(P' < k \) \textbf{then}

Remove all instances in \(P' \) from \(P \)

Create a new instance \(p \) comprising all areas in instances \(P' \) plus \(a \)

\textbf{if} \(p \) \textbf{contains } \(k \) \textbf{areas} \textbf{then}

solve \(p \) (\(\theta = \text{size of smallest centre in neighbourhood} \))

\textbf{else}

insert \(p \) to \(P \)

\textbf{end if}

\textbf{else}

Solve the instance in \(P' \) containing most areas (\(\theta = w(a) \)).

Remove this instance from \(P \).

\textbf{end if}

\[a = \text{smallest area in data set, not contained in instances } P \]

\textbf{end while}

Solve all remaining instances in \(P \), applying threshold for target scale.
5. Algorithm

Interpretation of proposed algorithm:

\[k = 1 \]
\[k = |V| \]

It is likely that good solutions can be obtained when foreseeing more merges than one.
6. Results

ATKIS DLM50
Buchholz in der Nordheide

5 km
after aggregation, scale 1:250,000, \(k = 200 \), 82 min

Comparison with iterative method:
- -20 \% costs for class change
- -2 \% costs for non-compact shapes
- -8 \% total costs

5 km
6. Results

after line simplification, scale 1:250,000
6. Results

Details

ATKIS DLM50 Buchholz in der Nordheide

- after aggregation scale 1:250,000
- after line simplification scale 1:250,000
6. Results

Details

ATKIS DLM50 Buchholz in der Nordheide

1 km

after aggregation scale 1:250.000

after line simplification scale 1:250.000
Results for different values of k:
6. Results

Other benefits:

- Intermediate scales can be used for continuous generalisation
- Further scales need to be interpolated
- Decomposition of problem is useful for incremental updating
- Decomposition allows to process in parallel
6. Results

Conclusion:

• A new efficient heuristic for area aggregation:
 – large areas are fixed as centres
 – intermediate scales are introduced

• In terms of class change, the method results in significantly better results than the purely iterative method (-20% cost).

• In terms of compactness only marginal improvements were made.

• The method generalises an existing algorithm for the same problem.

• Decomposition also allows incremental update.

• Intermediate scales can be exploited for continuous generalization.
EFFICIENT AREA AGGREGATION BY COMBINATION OF DIFFERENT TECHNIQUES

Jan-Henrik Haunert
Institut für Kartographie und Geoinformatik
Leibniz Universität Hannover