
Moscow, 3.8.2007

Jan-Henrik Haunert
Institut für Kartographie und Geoinformatik
Leibniz Universität Hannover

EFFICIENT AREA AGGREGATION
BY COMBINATION OF DIFFERENT TECHNIQUES

Outline

1. Introduction
2. Problem definition
3. Results by mixed-integer programming
4. Problem decomposition
5. Algorithm
6. Results

Areas in topographic databases (e.g. German ATKIS)
• commonly define a planar subdivision.

• are often collected independently for different scales.

Automatic generalisation
• enables to collect data sets more efficiently.

• requires algorithms for different problems (area collapse, aggregation, line
simplification).

1. Introduction

Sample from ATKIS DLM50

1. Introduction

Generalisation must satisfy constraints defined in specifications:

1. Introduction

Existing aggregation algorithm (vanOosterom1995):

1:50.000 1:250.000Settlement Forest

Grassland
Farmland Open Forest
Water

a = smallest area in data set
while a is smaller than required for target scale do

merge a with best compatible neighbour
a = smallest area in data set

end while

Preprocessing: Input

1. Introduction

Preprocessing: Result

1. Introduction

2. Problem definition

Graph representation of a planar subdivision

A planar subdivision is represented by

• Adjacency graph G(V, E)

• Node weights w : V → R+ (area sizes)

• Node colours γ : V → Γ (land cover classes)

Graph representation of a planar subdivision

2. Problem definition

Problem: P = {{v1, v2, v4}, {v3, v5, v6}, {v7, v8, v9}}
v1 v2 v3

v7 v8 v9

v4 v5 v6

2. Problem definition

Define new colours γ′ : V → Γ and a partition P = {V1, V2, . . . , Vn} of V ,

Problem: P = {{v1, v2, v4}, {v3, v5, v6}, {v7, v8, v9}}
v1 v2 v3

v7 v8 v9

v4 v5 v6

Define new colours γ′ : V → Γ and a partition P = {V1, V2, . . . , Vn} of V ,
such that for each aggregate Vi ∈ P

• the induced graph is connected,

• all contained nodes have the same new colour γ′i,

• at least one contained node keeps its original colour, and

• the total weight of Vi is at least θ(γ′i),

with θ : Γ → R+ defining the area thresholds for different colours.

2. Problem definition

Objective:
1. Change land cover classes as little as possible.

Minimise
∑

v∈V w(v) · d(γ(v), γ′(v)),

with d : Γ2 → R+
0 defining the similarity of land cover classes.

2. Problem definition

Objective:
2. Geometrically compact regions are preferred.

with c : 2V × Γ → R+
0 defining a cost for the non-

compactness of an aggregate.

Minimise
∑

Vi∈P c(Vi, γ
′
i),

2. Problem definition

Definition:
Each aggregate has a centre, which defines the colour
of the aggregate and a central reference point, which
is used to measure compactness.

Each node is a potential centre.

Objective:
1. & 2. combined

Minimise s ·
∑

v∈V w(v) · d(γ(v), γ′(v)) + (1− s) ·
∑

Vi∈P c(Vi, γ
′
i),

with s ∈ R, 0 < s < 1.

2. Problem definition

Complexity:

The aggregation problem ist NP-hard, even if

– the map has only two colours,
– the area threshold is the same for all colours,
– the distances between each two different colours are the same,
– the objective of compactness is ignored, and
– the weights of all nodes are equal.

2. Problem definition

Motivation for mixed-integer programming and heuristic
methods

Mixed-integer programming

3. Results by mixed-integer programming

1:250.0001:50.000

• Performance is not appropriate for cartographic production.

• Introduce heuristics, which allow

– other MIP formulations
– elimination of some variables

nodes time objective
30 90.2s 1.73
40 12.7h 1.67
50 20.0h 2.15

exact MIP MIP with heuristics

nodes time objective
30 0.01s 2.41
40 0.03s 1.82
50 0.45s 2.34

400 22min 19.15

MIP with heuristics

• produces near-optimal solutions and

• solves instance with 400 areas in reasonable time.

Results
Iterative algorithm

nodes objective
30 5.51
40 5.35
50 6.35

400 29.04

Assumption for further approach:
We can solve instances with k or less nodes
(not restricted to any specific technique like
mixed-integer programming).

3. Results by mixed-integer programming

Approach based on a heuristic

4. Problem decomposition

1.2

0.7

0.6

0.3 1.1 0.8

1.4

0.7

0.8

1.3

1.1

0.8

thresholds θ(γ) = 1 for all γ ∈ Γ

Example:

1.2

0.7

0.6

0.3 1.1 0.8

1.4

0.7

0.8

1.3

1.1

0.8

• Assumption: Large areas can be fixed as centres without loosing
good solutions.

• In particular this can be done for nodes v ∈ V with w(v) > θ(γ(v)),
i.e., areas that are sufficiently large for the target scale.

Approach based on a heuristic

4. Problem decomposition

• Assumption: Large areas can be fixed as centres without loosing
good solutions.

• In particular this can be done for nodes v ∈ V with w(v) > θ(γ(v)),
i.e., areas that are sufficiently large for the target scale.

• When fixing nodes with
w(v) ≥ θ(γ(v))
as centres, the aggregation problem
can be solved independently for each
connected component of the graph
induced by the other nodes.

Meaning for mixed-integer programming:

4. Problem decomposition

•Constraints have general form A · x ≤ b

• If the graph has two connected components,

the matrix A will has form
(

A1 0
0 A2

)

Just theory?

4. Problem decomposition

4. Problem decomposition

ATKIS DLM 1:50.000
BUCHHOLZ IN DER NORDHEIDE
5537 polygons (after preprocessing)
20 × 20 km2

4. Problem decomposition

ATKIS DLM 1:50.000
BUCHHOLZ IN DER NORDHEIDE
5537 polygons (after preprocessing)
20 × 20 km2

Areas of sufficient
size for scale
1:250.000 (red):

7% of all polygons
49% of area
coverage

4. Problem decomposition

• 145 independent problem instances
• 1 big component with 76% of all polygons
• all other instances can be solved with heuristic MIP (|V | ≤ 198)

4. Problem decomposition

Idea:
• Introduce intermediate scales/thresholds
• The number of predefined centres will increase
• The resulting instances will become smaller

• Intermediate scales should only be introduced
if needed.

• It needs to be ensured that the instances have
size at most k.

5. Algorithm

P = a set of open problem instances, initially empty
a = smallest area in data set
while a is smaller than required for the target scale do

P ′= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P ′ < k then

Remove all instances in P ′ from P

Create a new instance p comprising all areas in instances P ′ plus a

if p contains k areas then
solve p

else
insert p to P

end if

else

Solve the instance in P ′ containing most areas (θ = w(a)).
Remove this instance from P .

end if

a = smallest area in data set, not contained in instances P

end while
Solve all remaining instances in P , applying threshold for target scale.

a

a

a

p

p

p

5. Algorithm

P = a set of open problem instances, initially empty
a = smallest area in data set
while a is smaller than required for the target scale do

P ′= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P ′ < k then

Remove all instances in P ′ from P

Create a new instance p comprising all areas in instances P ′ plus a

if p contains k areas then
solve p (θ = size of smallest centre in neighbourhood)

else
insert p to P

end if

else

Solve the instance in P ′ containing most areas (θ = w(a)).
Remove this instance from P .

end if

a = smallest area in data set, not contained in instances P

end while
Solve all remaining instances in P , applying threshold for target scale.

a

p

5. Algorithm

P = a set of open problem instances, initially empty
a = smallest area in data set
while a is smaller than required for the target scale do

P ′= the set of problem instances in P containing a neighbour of a

if total number of areas contained in instances P ′ < k then

Remove all instances in P ′ from P

Create a new instance p comprising all areas in instances P ′ plus a

if p contains k areas then
solve p (θ = size of smallest centre in neighbourhood)

else
insert p to P

end if

else

Solve the instance in P ′ containing most areas (θ = w(a)).
Remove this instance from P .

end if

a = smallest area in data set, not contained in instances P

end while
Solve all remaining instances in P , applying threshold for target scale.

5. Algorithm

Interpretation of proposed algorithm:

1:50.000

1:250.000

iterative algorithm
(GAP-tree)

global approachcombined

k = 1 k = |V |
It is likely that good solutions can be obtained when
foreseeing more merges than one.

ATKIS DLM50
Buchholz in der

Nordheide

5 km

6. Results

after aggregation,
scale 1:250.000,
k = 200
82 min

Comparison with
iterative method:

• -20 % costs for
class change

• -2 % costs for
non-compact
shapes

• -8 % total costs
5 km

6. Results

after line simplification,
scale 1:250.000

5 km

6. Results

after aggregation
scale 1:250.000

ATKIS DLM50
Buchholz in der

Nordheide

after line simplification
scale 1:250.000

Details

1 km

6. Results

Details
1 km

6. Results

after aggregation
scale 1:250.000

ATKIS DLM50
Buchholz in der

Nordheide

after line simplification
scale 1:250.000

6. Results

19

29

39

49

59

69

79

89

99

001

101

052002051001050

Results for different values of k:

cost

k

6. Results

Other benefits:

• Intermediate scales can
be used for continuous
generalisation

• Further scales need to
be interpolated

•Decomposition of pro-
blem is useful for incre-
mental updating

•Decomposition allows to
process in parallel

6. Results

Conclusion:
• A new efficient heuristic for area aggregation:

– large areas are fixed as centres
– intermediate scales are introduced

• In terms of class change, the method results in significantly
better results than the purely iterative method (-20% cost).

• In terms of compactness only marginal improvements
were made.

• The method generalises an existing algorithm for the same
problem.

•Decomposition also allows incremental update.
• Intermediate scales can be exploited for

continuous generalization.

Moscow, 3.8.2007

Jan-Henrik Haunert
Institut für Kartographie und Geoinformatik
Leibniz Universität Hannover

EFFICIENT AREA AGGREGATION
BY COMBINATION OF DIFFERENT TECHNIQUES

