Towards a Data Model for Update Propagation in MR-DLM

Sheng Zhou¹, Nicolas Regnauld¹ and Carsten Roensdorf²
Ordnance Survey Research¹
Ordnance Survey GeoData Management Group²

11th ICA Workshop on Generalisation and Multiple Representation, 20th to 21st June 2008, Montpellier, France
Multi-representation: the issue

• A conceptual issue
 • One geographic phenomenon, multiple viewpoints
 • A (geometric/graphic/etc.) representation for each viewpoint

• A SDB perspective
 • Different users require different representations
 • The more representations a SDB can supply, the more useful it becomes
Multi-Representation: a reality check

- Two ideal (but currently less than practical) solutions:
 - Online Generalisation
 - Performance restriction
 - Pre-computed MRep-Geometry
 - Difficult to construct

- A more practical solution: a Multi-version approach
 - A finite number of versions are generated for each feature
 - Various versions are to be linked
Generating Multiple Versions/Representations

- Match & Link
 - Matching and linking different representations of the same feature in different existing datasets
 - More difficult to handle derivation
- Link by generalisation
 - Generating additional (less detailed) representations from a base representation via generalisation
 - Linkage and derivation are inherent
An example of Multi-Version MR-DLM/MR-SDB
Maintaining Multiple Versions

• The nature of MR-DLM maintenance
 • Changes usually occur at one scale
 • Updates will be propagated to other scales
 • Local update preferable

• Information requirements of update propagation
 • Minimum: linkage between source and generalised/derived
 • Desirable: application-specific operational information (algorithm types, parameters, etc.)
A Model of Generalisation Process

- A hierarchy of Session/Process/Operation
 - A session consists of a set of prioritised processes
 - A process consists of one or more parallel operations
 - Operations are the basic functional units of generalisation
Session as a DAG of Processes

• “Precedence” represents the execution priority of processes, e.g.:
 • \(P_2 \) precedes \(P_3 \)
Processes, Operations and features

- Division of a process into operations:
 - Current design: parallel and independent, i.e.
 - Partition on data dimension
 - Functionally identical to parent process
 - Potential alternative:
 - Priority/precedence for operations:
 - Partition on both data and functional dimensions
- Role of features in an operation
 - Source: the original
 - Target: the generalised
 - Context: participating but not manipulated

Example: Building displacement

source

<table>
<thead>
<tr>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>context</td>
</tr>
</tbody>
</table>
Generalisation Logging – the data model
Linking Features and Operations

• Relations between features and operations

• A relational realisation

• Op. Ref. types: Source, Target, Context, Failed, etc.
What we can do with this model?

- Tracing the full generalisation history of each feature
 - Generalisation operations applied to the feature
 - Parameter values used
- Tracing the full generalisation history of each feature class (good source for automatic learning)
 - Useful when a new feature is added
- Re-constructing execution sequences of processes in a session from precedence information (by “topological sorting”)
- Storing and retrieving source, target or contextual features of a generalisation operation/process/session
Example A: 1:1 Source-Target Mapping

Building simplification

<table>
<thead>
<tr>
<th>Source table</th>
<th>Target table</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeatureID</td>
<td>FeatureID</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ProcessID</th>
<th>OperationID</th>
<th>FeatureID</th>
<th>ReferenceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>T</td>
</tr>
</tbody>
</table>
Example B: M:N Source-Target Mapping

Building aggregation

<table>
<thead>
<tr>
<th>Source table</th>
<th>Target table</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeatureID</td>
<td>FeatureID</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ProcessID</th>
<th>OperationID</th>
<th>FeatureID</th>
<th>ReferenceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>T</td>
</tr>
</tbody>
</table>
What’s next

- Theoretical:
 - Update management
 - Versioning to handle functional changes
 - E.g. new/alternative/improved algorithms
 - Versioning to handle data changes
 - E.g. addition/deletion/modification of features
 - Formalisation of the model (?)
 - A formal model for multi-version based multi-representation
- Practical:
 - API for handling generalisation logs
 - Experiment (MRep transportation network)
Question Time