A study on the state-of-the-art in automated map generalisation implemented in commercial out-of-the-box software

Nicolas Regnauld,
Ordnance Survey, Great Britain

Authors:
Jantien Stoter, ITC, Enschede
Karl-Heinrich Anders, University of Hanover
Blanca Baella, ICC, Catalonia
Dirk Burghardt, University of Zurich
Francisco Dávila, IGN, Spain
Cécile Duchêne, IGN, France
Maria Pla, ICC, Catalonia
Nicolas Regnauld, Ordnance Survey, Great Britain
Peter Rosenstand, KMS, Denmark
Stefan Schmid, University of Zurich
Guillaume Touya, IGN, France
Harry Uitermark, Kadaster, the Netherlands

21st June 2008, 11th ICA Workshop on Generalisation and Multiple Representation,
EuroSDR generalisation project

- Overview of presentation today:
 - Introduction
 - Methodology of the project
 - Initial results
 - Initial conclusions
Aim of the project

- How much automatic generalisation capabilities are available in commercial software

Audience

- NMAs: inform about the level of automation currently achievable
- Software companies: learn about NMAs requirements
- Research: what is still missing
Project team

- **NMAs:**
 - IGN, France
 - ICC, Catalonia
 - KMS, Denmark
 - Ordnance Survey, Great Britain
 - TD Kadaster, the Netherlands
 - IGN, Spain

- **Research institutes:**
 - University of Zurich, Switzerland
 - University of Hanover, Germany
 - ITC, Enschede

- We meet three times a year (start in October 2006)
Scope of the project

- Automated generalisation from large to mid-scale topographical data
- Focus is on:
 - generalisation of complete maps
 - fully automated generalisation
 - out-of-the-box versions, adjusting the software to a particular need will not be studied
Main contribution of the project

- **Methodology**
 - Formalism for expressing requirements
 - Evaluation method
 - General plan for this test

- **Results**
 - Can we express requirements in the systems
 - How well do the systems handle them
Methodology of the project

- Selection of test cases
- Software tested
- Defining map requirements
- Test process
- Evaluation methodology
Selection of test cases

- Selection of test cases, from four NMAs
- All interesting generalisation situations are covered

<table>
<thead>
<tr>
<th>Area type</th>
<th>Source dataset</th>
<th>Target dataset</th>
<th>Provided by</th>
<th>Nr of input layers</th>
<th>Main layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban area</td>
<td>1:1250</td>
<td>1:25k</td>
<td>OS Great Britain</td>
<td>37</td>
<td>buildings, roads, river, relief</td>
</tr>
<tr>
<td>Mountainous area</td>
<td>1:10k</td>
<td>1:50k</td>
<td>IGN France</td>
<td>23</td>
<td>village, river, land use</td>
</tr>
<tr>
<td>Rural area</td>
<td>1:10k</td>
<td>1:50k</td>
<td>Kadaster</td>
<td>29</td>
<td>small town, land use, planar partition</td>
</tr>
<tr>
<td>Costal area</td>
<td>1:25k</td>
<td>1:50k</td>
<td>ICC Catalonia</td>
<td>74</td>
<td>village, land use (not mosaic), hydrography</td>
</tr>
</tbody>
</table>
Software tested

- Systems:
 - Clarity (1Spatial)
 - ArcGIS (ESRI)
 - Typify/Change/Push (University of Hannover)
 - Axes systems

- System versions available in June 2007

- Initial preparation from the software providers
Defining map requirements

- Requirements expressed as constraints
 - Step 1: each NMA expresses its constraints
 - Step 2: harmonisation
Test process

- From June 2007 to 2008
- Testers:
 - Experts
 - Novices
 - Software companies

=> Resulted in appr. 10 outputs per test case
1:50K, derived from 1:25K, ICC

1:25K, derived from 1:1250, OSGB

1:50K, derived from 1:10K, Kadaster

1:50K, derived from 1:10K, IGN, France
Evaluation procedure

- Design the evaluation methodology (Dec 2007 - April 2008)
- Analysis of tester’s feedback
- Analysis of derived datasets (ongoing)
 - Automated evaluation (University of Zurich)
 - Expert evaluation (ITC)
 - Comparison of output data for one test case (IGN)
- End of evaluation: end of 2008

More details tomorrow
Initial results on testers feedback

- About 50% of constraints expressed

- Number of constraints expressed is dependent on:
 - Number of features (1, 2, group)
 - Focus of software system
 - Scale variation (low for OSGB)
 - Level of experience of tester
Initial conclusions (1/2)

- Project focuses on out-of-the-box versions
- Results show
 - Improvement since OOEPE test
 - Still significantly short of meeting requirements
 - Out-of-the-box results far below customised versions.

⇒ Currently, significant automation possible through customisation.
⇒ Automatic out-of-the-box solutions in their infancy.
Initial conclusions (2/2)

- Most valuable contributions:
 - Formalisation of map requirements
 - Evaluation methodology
 - Set up can be used for future test

- Less valuable contribution
 - Raw graphical outputs: high risk of mis-interpretation
Thank you for your attention...

stoter@itc.nl
Analysis of defined constraints

<table>
<thead>
<tr>
<th>Test case</th>
<th>Total number of constraints</th>
<th>Number of constraints</th>
<th>Number of constraints on different constraint types</th>
<th>Number of constraints on different feature classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on one object</td>
<td>on two objects</td>
<td>on group of objects</td>
<td>Model generalisation</td>
</tr>
<tr>
<td>ICC</td>
<td>137</td>
<td>86</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>TDK</td>
<td>52</td>
<td>27</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>IGNF</td>
<td>61</td>
<td>32</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>OSGB</td>
<td>49</td>
<td>24</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>299</td>
<td>169</td>
<td>72</td>
<td>58</td>
</tr>
</tbody>
</table>