A Review of the Clarity Generalisation Platform and the Customisations Developed at Ordnance Survey Research

Patrick Revell
Research Scientist

20th June 2008
Introduction

- Clarity:
 - Software platform dedicated to generalisation, created 2003
 - Consolidates experience from AGENT project
 - Funded by 1Spatial, IGN-F, IGN-B, KMS and OSGB
 - MAGNET partners coordinate developments with 1Spatial

- OS Generalisation Team:
 - Nicolas Regnauld (Team Leader)
 - Patrick Revell
 - Stuart Thom
 - Sheng Zhou
Clarity Architecture

Clarity:
- Display/Query
- Process
 - Sequences
 - Agent
- Customise
 - Menus/Toolbars
 - Algorithms

Agent:
- Agents perceive surroundings
- Determine conformance to constraints
- Propose algorithms to increase satisfaction
- Maximise satisfaction of set of constraints

Legacy Applications:
- Database management
- Define data model/topo rules
- Data import/export
- Create maps
- No Oracle connection

Java API Lull API

Gothic OO DB
Spatial Structures - Proximity

- Topology (“touches”, “connects to”)
 - Required by Clarity algorithms
 - Topological querying Java API
 - Topological modification Java API

- Delaunay Triangulation (“close to”)
 - New Java API
 - Proximity graph and MST
 - Centreline Skeleton

- Clustering (“close to”)
 - For large numbers of objects
 - Java implementation
 - Use for Urban/Rural Identification
Spatial Structures - Networks

- Road network:
 - Too detailed
 - Detect and collapse:
 - dual carriageways/traffic islands
 - roundabouts, interchanges etc.

- Other networks:
 - Collapse hydro/track/path polygons
 - Deduce missing links in networks
 - Hydro network classified by width
 - Path/track network connected to road network
 - Still need to work on rail network
Spatial Structures - Partitioning

- Break down dataset into autonomous regions
- Clarity: Create partitions from topologically structured network data
- Set up not straightforward
- Cannot cope with large datasets
- Workaround: main partitions, sub partitions

- See also: Chaudhry & Mackaness: “Partitioning Techniques to Make Manageable the Generalisation of National Spatial Datasets”
Building Generalisation

- Clarity Algorithms
 - 2 Simplification
 - Local enlargement
 - Building amalgamation

- 1:10 000 scale project
 - Simplification
 - Displacement (IGN)

- 1:50 000 scale project
 - Rural: Squared amalgamation
 - Urban: Growing tide
 - Agent process for both
Road Generalisation

- Sinuous Mountain Roads

- Displacement
 - Beams (hard to set up in Clarity, doesn’t work on large networks)
 - Push (University of Hannover, Clarity integration)
 - Agent system evaluates both and selects best result
Landcover Generalisation

- MSc project – large scale woodland 1:250 000 scale
- Landcover reclassification (combinations)
- Topological Gen:
 - Dissolve: by attribute/small holes/small areas
 - Simplify shared boundaries
- Symbol placement
Hydrology Generalisation

- Start with deduced hydrology network
- Analyse network, derive hierarchy
- Prune network – remove small streams
- Some rivers remain as polygons (buffer narrow sections)
- Rest are symbolised centrelines, based on original polygon width
Coastline Generalisation

- Weighted Effective Area algorithm (extends Visvalingham Whyatt)
Agent System

- Good for buildings and roads
- Useful for Carto Gen when sequence of algorithms and best parameters are not known in advance

- Performance overhead
- Time consuming to configure and debug
- Only use it when there are obvious benefits
- Sequential Model Gen/data enhancement, better outside Agent
Process Sequences

- Clarity XML process sequences
- Run in single edit session; if something goes wrong all it lost
- Long sequences, large datasets, Clarity can run out of memory
- New approach master Clarity invoke slave Clarity instances

- Recording of process history (Zhou, Regnauld and Roensdorf, “Towards a Data Model for Update Propagation in MR-DLM”)
Generalisation & Data Enhancement Processes

Source Data
- Enhanced Data
- Derived Components
- Process Log

Oracle (OS base data)

Gothic (1Spatial)

Maps:
- tif
- jpeg
- pdf
- shape

Clarity

Web Interface

StyleSheets Interface

Process Sequence Interface

Parameter Interface
Conclusions

• Clarity fragmented legacy products, database not Oracle
• Strong Clarity functionality is hard to access/configure
 (Agent, Beams, Topology, Lull algorithms)
• OS made tools make Clarity easier to use
• OS data need enhancing before Gen, tools not in Clarity
• Clarity algorithms mostly not applicable to OS data
 (EuroSDR: all Gen platforms require NMA customisation)
• But Clarity good base for developing new algorithms
• Now have strong toolset for generic platform
• MAGNET collaboration beneficial
• Web services expands scope for future collaboration
Merci pour votre attention !