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Abstract 

Map generalisation is a modelling process in which it is typical that detailed, high 

dimensional geographic phenomena are reduced down to a set of more generalised concepts 

(for example that a large cluster of buildings is reduced down to the higher order concept of 

‘city’). This process of generalisation necessarily requires us to handle very large volumes of 

data which results in high processing overheads. One way of managing high processing 

overheads is to partition the data. When we break a dataset up into chunks, we need to 

partition it in such a way that each partition can be generalised without having to consider 

regions outside that partition. This paper illustrates how the shape and form of partitions are 

governed by the phenomena being generalised and the type of generalisation methodology 

being applied. We argue that there is no single partition set suitable for all map features. 

Instead one can envisage a library of partition sets derived from different data types 

(combined or applied in isolation) that can be used to support various generalisation 

processes. The ultimate ambition is to make the problem sufficiently manageable that we can 

create generalised descriptions at the National Scale (say for Great Britain) from the very 

detailed. The paper presents various examples of partition sets and illustrates how these can 

be used to generalise national coverages. 

1.0 Introduction 

Many National Mapping Agencies maintain detailed, large-scale mapping at national 

coverage with plans to add increasing amounts of detail and dimensionality. Consequently the 

data volumes are increasing, as are the sophistication of ‘context aware’ generalisation 

algorithms. The processing overheads associated with data enrichment, analysis and 

generalisation of  national coverages require us to give careful thought as to how we can 

manage and efficiently handle very large volumes of data – particularly if we are to create 

multi resolution databases capable of automated update. For example it is estimated that the 

Ordnance Survey’s MasterMap
®

 database contains over 400 million objects. Map 

generalisation is a well understood topic (Buttenfield & McMaster, 1991; Mackaness et al., 

2007; Müller et al., 1995). Over the past three decades, a great deal of effort has gone into 

developing geometric based algorithms that can be applied to specific classes of features 

(algorithms for point, line and areal feature generalization (Regnauld and McMaster (2007)). 

Typically such algorithms have high processing times and require large amounts of memory 

(Boffet & Serra, 2001; Li et al., 2004). Their utility is often demonstrated using small 

datasets, and the scalability of these methods are rarely considered (Wu et al., 2007). From a 

pragmatic point of view, we argue that before we can apply these algorithms it is first 

necessary to partition the dataset. Successful partitioning of the data enables us to take 
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advantage of both concurrent programming environments (Oaks & Wong, 1997) and GIS 

systems that support parallel processing. 

2.0 Partitioning 

There is a considerable literature on the topic of partitioning geographical data (Goodchild, 

1989; Han et al., 2001; Harel & Koren, 2001; Samet, 1989; Sloan et al., 1999), most notably 

methods for partitioning graphs (Tu et al., 2005; Wu & Leahy, 1993), quadtrees, R trees 

(Kothuri et al., 2002; Mark, 1986) and GAP trees (van Oosterom, 1995; van Putten & van 

Oosterom, 1998). The dendrogram generated from clustering spatial data is an intuitive way 

of visualising how we can partition data, and the Voronoi and its dual, have also been 

proposed as methods for the efficient indexing of spatial information (Yang & Gold 1996; 

Zhao et al., 1999). Many of these techniques have been used as a basis for creating 

hierarchical structures – critical to the retrieval and dynamic rendering of geographical 

information (Frank & Timpf, 1994; van Oosterom & Schenkelaars, 1995) - (as is required in 

virtual fly throughs for example). Such structures are relevant to the field of generalisation, 

where we wish to store multiple representations of objects at varying granularity. Partitioning 

datasets in order to balance loads among multi processors is an important ambition. We would 

argue that because of the dependency between the ‘geography’ of an object and 

generalisation, that it is critical that we partition datasets in a way that takes into account the 

geography of the object being analysed. Using geometric partitioning that fails to reflect the 

geography of the features (in particular their interdependence with other features) can result 

(inadvertently) in artefacts of the partitioning process becoming part of the geography of 

those features. For example, some algorithms for point thinning of lines (such as Douglas & 

Peucker (1973)) require a start or anchor node to be specified. If linear features are 

geometrically partitioned and independently processed, then the point at which those features 

are ‘broken’ will affect the resulting output. In the example of Figure 1, the generalised lines 

(b) vary depending on where the partition falls. In this instance, a far better solution would be 

to partition the line according to its complexity or characteristic components (Figure 1c). By 

doing so, a more robust solution is derived. Additionally if we partition according to the 

character and geography of the line, then we have the opportunity of applying different 

algorithms according to the nature and character of the feature being generalised (Plazanet, 

1995).  
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Figure 1: For the input (a), changing the location of the partitioning tile generates different results (even 

though the parameters of the algorithm remain the same) (b). A more meaningful and useful solution is to 

partition according to the geography or character of the object (for example c). 

 

Figure 2 illustrates a similar idea but with respect to point objects. In Figure 2a, partitioning is 

by simple tiling (not taking into account the manner in which the data are clustered) – each 

tile partition has been processed and the results recombined resulting in the creation of three 

convex hulls. We observe that the creation of the convex hulls is an artefact of the tiling. In 

Figure 2b the road network has provided a useful mechanism by which the data can be 

partitioned (in this case) – resulting in the creation of convex hulls that reflect the distribution 

of the phenomenon (Figure 2b). 

 
Figure 2: A simple task (creating convex hulls) can be affected by the way the data are partitioned. In 2a 

partitions are creating using fixed size tiling. Whereas in Figure 2b we have partitions based on part of the 

road network classification – a situation in which we have been able to ensure that the convex hull reflects 

the underlying phenomenon being mapped. 
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2.1 ‘Meaningful’ Partitions 

We know that geography is not as well behaved as these two examples might suggest. Thus 

care must be taken in the creation of these partitions. The partitions must be ‘meaningful’ in 

the sense that their creation needs to be sensitive to the geographic nature of the features 

being generalised, their distribution and their interdependencies. For the purposes of this 

discussion it is useful to consider the map as being made up of three types of objects: 

networks, space exhaustive tessellations (surfaces comprising deformable objects) and 

discrete (small) rigid objects. Each of these data types can be used as a basis for creating 

different partition sets. Furthermore we observe that typically there are strong correlations 

between various geographic phenomena – for example there is a strong correlation between 

the density of road junctions (point objects) and the density of buildings (area objects) or that 

the morphology of the landscape (a surface) defines catchments in which we will find river 

networks. Given these sorts of interdependencies,  we might use cluster analysis of point data 

of junctions to define partitions for the generalisation of groups of buildings, and use 

morphological analysis (Wood, 1996) to create a set of partitions for handling the 

generalisation of river networks (which themselves would be modelled in graph theoretic 

form (Gibson et al., 2005; Kawaji et al., 2001) as a basis for ‘pruning’ the network (Ai & Liu, 

2006; Miller & Shaw, 2001; Thomson & Richardson, 1999). Each approach will generate a 

different set of partitions. These partitions provide a basis for the ‘rough’ division of the 

phenomena being generalised. In this sense they are akin to the tailor making a suite, the 

challenge is in ‘roughly’ dividing the national coverage into partitions, and then applying a 

particular process to the objects contained in each partition. Our focus in this paper is on 

generalisation but different processes may well require different partition types. Figure 3 

seeks to summarise these ideas – that various data types (Figure 3a) can be used as a basis for 

creating different types of partitions (b) which themselves can be permutated with other 

partition sets to create a range of partition sets in order to ‘rough cut’ the datasets. For 

example one might develop an algorithm for generalisation of mountainous villages, in which 

case the partitions from the city and height partitions can be combined to identify possible 

candidates. 
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Figure 3:Creating and combining partitions in different ways (c) – based on (a) polygons, networks, 

surfaces and points. 

 

In the following three sections we illustrate the creation and application of different partition 

sets and demonstrate how they can be applied to national datasets. We demonstrate how this 

approach makes manageable the handling of very large datasets offering the possibility for 

concurrent programming. The three approaches demonstrate the importance of partitioning 

detailed datasets as a pre-process to creation of feature boundaries (prominent hills/ranges, 

settlement and forest) that are present at lower levels of detail (say 1:250k). The parameter 

settings used are in anticipation of this resultant level of detail. For other levels of detail these 

parameters would require tuning. 

3.0 Partitioning Digital Terrain Model prior to extraction of Hills and 

Range boundaries 

An earlier paper (Chaudhry & Mackaness, (in press)) presents an approach for the extraction 

of summit boundaries from a high resolution digital terrain model (DTM). In summary the 

technique measures prominence (relative difference in height) and morphological variability 

in the landscape as a basis for defining the extent of a range or a hill. Additionally the 

algorithm is able to model the ‘child parent’ relationship between the range and its various 

subcomponents.  
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The technique is computationally intensive. If we are to apply this approach to a national 

coverage, we must first partition the dataset (to manage processing and memory constraints) – 

but in a way that does not destroy the continuity of any given range. A partition would not be 

meaningful if it split a hill or range in half – since in separately processing the two halves, we 

would lose the identity of the hill or range as a whole. This is precisely what would happen if 

we use regular tiling. What is required is a partitioning that divides the country up into broad 

morphological regions, and then for the generalisation algorithm (Chaudhry & Mackaness, (in 

press)) to then be applied within each of these broad regions. 

 
Figure 4: We use a low resolution DTM (SRTM) to partition a detailed DTM (Panorama) and create 

summit extents in each partition before re-assembly of the partitions. 

 

The overall methodology for partitioning and generating of hills and range boundaries from 

DTM can be viewed as a combination of three sub methodologies (Figure 4). The first stage 

of the methodology uses a low resolution DTM (SRTM data 90m) for the creation of the 

partition set (Figure 4a). These partitions are used to ‘cookie cut’ regions from a detailed 

DTM (Ordnance Survey Land-Form Panorama
®

 data 50m or Land-Form Profile Plus
® 

10m). 

A summit boundary detection algorithm (Figure 4c) is then applied to each partitioned DTM 

region (Figure 4b), before being ‘re-assembled’ back into a single file (Figure 4d).  

 

3.1 Partitioning Methodology Using Surfaces 

We begin by describing the partitioning methodology (Figure 4a). In a generalisation context, 

computational effort is greatest in regions where there is high variance among complex 

morphology (in relatively flat regions the computational effort is much less). The 

methodology of partitioning separates regions of high variability from low variability regions. 

We use as input, low resolution data from the Shuttle Radar Topography Mission (SRTM) – a 
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mission that collected a digital terrain model for 80% of the world (www2.jpl.nasa.gov/srtm/). 

The SRTM covering most of Scotland is shown in Figure 5. The partitioning algorithm begins 

by creating a relief surface. Relief is the difference of elevation of each location as compared 

with its surrounding within a prescribed locus (Summerfield, 1991). The relief for each 

location (pixel or cell) of the SRTM data is calculated by searching for the highest and lowest 

point of the relief within a passing circular kernel of given size. The larger the size of the 

kernel the more neighbouring cells considered for each cell. In this research the radius was 

empirically determined and was set to 10 cells. Each kernel thus included a region of 900m by 

900m. More than 10 cells and the relief is of a very general form; less than 10 cells and the 

relief is unnecessarily detailed for the purposes of creating our ‘rough cuts’. The resulting 

relief surface for the SRTM DTM in Figure 5 is shown in Figure 6. We then created a masked 

surface using a relief threshold (empirically determined to be 60m). This value was chosen 

because we are only interested in significant changes in the landscape. If the relief value for 

the cell is above or equal to this threshold then it is assigned a value 1, otherwise 0. The 

resulting surface is then converted into polygons (using the raster to polygon utility in ArcGIS 

9.2). All adjacent cells that have the same value (0 or 1) are grouped into the same polygon. 

Figure 7 shows the three resulting partition polygons for Scotland. Some of the resulting 

partition polygon are quite small in extent and represent a small region they can either be 

processed separately or can be processed as part of the residual (grey polygon in Figure 7). 

Figure 8 shows the application of same process with same threshold values using SRTM for 

all of the UK and Ireland.  

 

    
Figure 5: SRTM data for Scotland                Figure 6: Relief Map of Scotland using SRTM 
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Figure 7: Partitions created using the partitioning algorithm and SRTM data 

 
Figure 8: a) SRTM for UK and Ireland b) Relief  from SRTM c) Partition polygons (21) for theUK and 

Ireland 
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The partition polygons are then used to partition a high resolution DTM (OS Land-Form 

Panorama), a 50m DTM that covers the whole of Great Britain. Thus the DTM in Figure 9a 

was intersected by the partition polygons of Figure 7 resulting in the division of the high 

resolution DTM into three sub DTMs (Figure 9b). These three DTMs were processed 

separately in order to identify the hills and range boundaries (Figure 4c). The resultant 

boundaries obtained within each partition by this process (Chaudhry & Mackaness, (in press)) 

are shown in Figure 10.  

 

  
Figure 9: (a) OS Land-Form Panorama (50m) DTM (b) Source DTM (Figure 9a) partitioned into 3 sub-

DTMs (Ordnance Survey © Crown Copyright. All rights reserved) 
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Figure 10: The reassembled Hills and Range boundaries using the three DTM partitions shown in Figure 

9b 

 

Table1 shows the processing times for summit boundary algorithm and for the creation of 

partitions from SRTM. It also shows the total number of summits found in each partition and 

the time taken to process each partition. The whole process (Figure 4) was executed on a 

standard PC (2.99GHz, 2 GB of RAM). As an additional part of the evaluation, the 

correctness of the boundaries shown in Figure 10 were evaluated by calculating the distance 

of each hill and range boundary from the text points taken from the ‘Land Use’ layer of 

Ordnance Survey’s Strategi
®

 dataset (at 1:250K). The statistical analysis of text points from 

OS Strategi and their distances from the boundaries showed that nearly 95% of all text points 

are within the resultant extents. A few texts are within a few meters of the extent, but fell 

outside the boundary. This is mainly due to cartographic operations, such as displacement, 

applied to the text points in OS Strategi dataset. It is important to note that in Strategi there is 

no link between the text points and the objects they represent but with this approach, the 

boundaries can be associated with the text, thereby used to improve automated text 

placement. Additionally these extents can form the basis for other types of spatial analysis 

and enrichment of other topographic databases (Chaudhry, 2007). 
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Table 1: Processing time for hill and boundary dectection algorithim for each of three partitions. Also the 

processing time for creation of partitions using SRTM.  

Data Set Region 

Number  

of Summits 

Total Time  

 

Time per  

Summit in mins 

Creation of Partitions using SRTM 20 mins  

Land-Form Panorama (50m) Borders 1,613 95 mins 0.06 

Land-Form Panorama (50m) High Lands 6,046 29 hrs 0.28 

Land-Form Panorama (50m) Rest of Scotland 438 27 mins 0.06 

 

4.0 Partitioning Building Data Prior to Settlement Boundaries 

By way of a second example, we illustrate how partitions can be formed based on the density 

of point data. In this example, the focus is on creating a set of partitions for handling a very 

large numbers of discrete areal features. The focus is on generalisation of buildings in order to 

create the boundary to a city or settlement represented at 1:250K. If we consider only 

Scotland, this requires us to handle approximately three million buildings as polygons. The 

point data used to create the partition set is the nodes from the road network – stored as part 

of Ordnance Survey’s ITN dataset. The junctions are single node points, whereas the 

buildings are described as complex polygons. Using point data is far more computationally 

efficient. Using this approach we can derive products directly from the very fine detailed 

1:1250,1:2500, 1:10K database and produce generalised results for representation at notional 

scales of 1:250K.  

 

The settlement boundary generation methodology has been explained in an earlier paper 

(Chaudhry & Mackaness, 2008). In brief, it involves calculating a ‘citiness’ value for each 

building based on its size and density, creating clusters based on density of buildings, 

amalgamating them in order to define a boundary and selected of boundary significant for 

1:250K level of detail. Our focus here is to explain the partitioning methodology used prior to 

the execution of the settlement boundary algorithm.  

4.1 Partitioning Methodology Using Point Data 

Such large volumes of data not only require large storage space but also require large amounts 

of memory and processing time in order to identify settlement boundaries. The requirement is 

to partition the data such that building data can be handled separately within each partition 

without affecting the resultant settlement boundaries. Various ideas were explored but one 

candidate that proved very useful in the creation of partitions was to use road nodes selected 

from OS MasterMap’s Integrated Transport Network (ITN) dataset. The reason being that 

there is a strong association between the road network and building objects. Where there is a 

high density of buildings (a settlement or town), there is high density of roads (and vice 

versa). These road objects in ITN are topologically structured in terms of graph theoretic 

elements i.e. segments and nodes (Beard & Mackaness, 1993; Molenaar, 1998) . Each road 

segment has a start node and an end node. These were input into a clustering algorithm in 

order to create partition boundaries. Road nodes are represented as a single point (dimension 

0), rather than buildings (which have complex area geometries); there are far fewer road 

nodes than buildings (of the order of 1 node for every 10 buildings), and the road nodes are 

closely correlated with buildings both in urban and rural areas (in effect where you find 

buildings you find road nodes and vice versa). This is summarised in Table 2. 
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Table 2: The number of buildings per node for an extended region around Glasgow 

 Buildings Nodes Buildings per node 

Urban regions 310,502  30,267 10.3 

Rural areas 30,900  3,188 9.7 

Overall 341,402  33,455 10.2 

 

Road nodes were selected for the entire region of interest (in this case for the whole of 

Scotland; total road nodes 394,696) and were loaded into a spatial database. For each junction 

we counted and recorded the number of nodes within a radius of ‘x’ meters. Different distance 

threshold were tested ranging from 100m to 3000m. Small thresholds resulted in partitions 

that were too small for the required level of detail (the same settlement boundary fell within 

separate partitions). Threshold that were large resulted in large partitions which would result 

in selection of more buildings thus increasing the processing time. 1000m was found to be the 

most appropriate because it created large partitions within which groups of buildings naturally 

fell (without the partition acting to divide up cities or towns). This gave us a measure of 

density, assigned to each node. We then created a buffer around each node, the size of the 

buffer being proportional to its density. The overlapping regions were then merged. Figure 11 

summarises this process. 

 
 

 
Figure 11: Squares represent buildings; black dots – road nodes. Junction points are buffered and merged 

to create partitions (grey regions); these are subsequently used to partition sets of buildings which are 

then processed (in this figure, to produce simple convex hulls). 

 

Figure 12 shows the partition set created using this approach for the whole of Scotland. The 

right hand side of Figure 12 shows one partition in more detail. Note that the buildings fall 

within the partition. The creation of these partitions now affords a means of using concurrent 

(parallel processing) or sequential processing to analyse and process the whole dataset. The 

settlement boundary algorithm (Chaudhry & Mackaness, 2008) can now be applied, partition 

by partition. Figure 13a shows the result of applying the settlement boundary algorithm to the 

buildings contained within the partition shown in Figure 12. By way of comparison, Figure 

13b shows overlayed, the equivalent cartographically hand drawn result for the same region. 

More on evaluation of resultant settlement boundaries can be found in Chaudhry and 

Mackaness (2008). 



11
th

 ICA Workshop on Generalisation and Multiple Representation 20-21 June 2008, Montpellier, France 

 13 

 

Figure 12: Partitions for entire Scotland created using node dataset with distance threshold of 1000m. The 

partition is around the city of Aberdeen (Ordnance Survey © Crown Copyright. All rights reserved) 

 

 
Figure 13: (a) Resultant settlement boundaries derived from partition shown in Figure 12;  (b)  OS 

Strategi settlement boundaries (1:250,000) for the corresponding region generated manually by 

cartographers (Ordnance Survey © Crown Copyright. All rights reserved) 
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Table 3 summarises the processing times for calculation of partitions and the processing times 

for calculation of settlement boundaries using the settlement boundary approach (Chaudhry & 

Mackaness, 2008) for different partitions.  

 
Table 3: Processing times for different stages and partitions 

Region  Total time in Hours 

Partitioning Boundaries (using road nodes for entire 

Scotland) 

  

1.9 

  No of Building   

Settlement Boundaries (Aberdeen region partition 

Figure12 a) 

96,000 

2.5 

Settlement Boundaries (Edinburgh region partition) 168,830 6.6 

Settlement Boundaries (Glasgow region partition) 544,000 22.5 

Settlement Boundaries (all remaining partitions)   15.4 

The whole of Scotland  3,040,654 (estimate) 98 

5.0 Partitioning Tree Data Prior to Forest Boundaries 

Having demonstrated how partitions can be created using morphology and point clustering, 

this third example shows how networks (in combination with polygonal data) can be used to 

create other types of partition set. In this third example, our focus was on handling the 

generalisation of large numbers of forest patches. The problem with partitioning forested 

areas is that there is huge variability in the extent of a forested area, and there is no strong 

correlation with other feature classes. This is illustrated in Figure 14 which shows tree patches 

selected from the source database. These tree patches are captured at a high level of detail 

(1:1250 scale in urban areas, 1:2500 scale in rural areas and 1:10,000 scale in mountain and 

moorland areas) and are stored as polygons. The objective here is to generate forest 

boundaries from the combination of these individual tree patches for representation at 

1:250,000 scale using a forest boundary detection approach (Mackaness et al., 2008). Prior to 

construction of these forest boundaries from tree patches, a partitioning approach is required 

in order to make the problem scalable. Here we present one such partitioning approach. 
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Figure 14: An example of tree patches selected from the source database along with road objects for a 

region south west of Edinburgh, Scotland. The tree patches overlap with road objects. (Ordnance Survey 

© Crown Copyright. All rights reserved) 

5.1 Methodology 

The challenge is in finding a class of feature that can be used as a basis for partitioning tree 

patches. River networks could be used, but because they are acyclic do not naturally lend 

themselves to the creation of partitions. It was observed that there is a weak correlation 

between the location of forestry data (patches) and road partitions in so much as the road 

partitions form cycles in the graph (closed regions) and ‘divide’ forest regions. We also 

observe that the area within a road partition tends to be very small in cities, and cities 

typically contain little forest. Conversely there are remote parts of Scotland that are poorly 

serviced by roads (large partitions) yet which are heavily forested. In this project it was 

decided to examine the role of the road network in partitioning forestry data covering the 

whole of Scotland. It was not necessary to use all the road classes since this would produce 

many small partitions, many of which would contain no forested areas. Initial experiments 

focused on using only ‘motorways’, ‘A’ and ‘B’ roads and subsequent analysis of processing 

times indicated that this was a pragmatic solution. There was a concern that the road network 

would be very dense within cities and create very large numbers of small partitions. Given 

this concern we had considered using city boundary partitions to handle this problem. Though 

this was indeed the case, the algorithm was very efficient at processing empty partitions and 

so it was not necessary to used this combining of partition sets. It is also the case that 

although cities do indeed have high densities of roads, the city itself does not contain 

especially high numbers of motorways, A and B roads. Therefore cities did not excessively 

create very large numbers of partitions in the way that we feared it might. Figure 15 is an 

example of the selection of motorways, A and B roads for a small area and the partitions 

formed using these selected roads. 
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Figure 15: Partitions (b) formed from the selection of motorways, A and B roads only (a). Roads, not 

reaching the coast, resulting in very large ‘open’ partitions. (Ordnance Survey © Crown Copyright. All 

rights reserved) 

 

The creation of a partition requires the graph to be ‘closed’. There are many instances of roads 

that are not closed – like spider’s legs they radiate out towards the coast, but do not form 

closed loops, and do not therefore form a partition (Figure 15). In order to create a set of 

partitions that covered the whole of Scotland, it was necessary to use the road network, and 

additionally the mean high water line (MHW) data as a way of ‘closing’ the partitions at the 

coastal margins.  

 

Using the MHW was in preference to the coastal line which was broken wherever there was 

an estuarine feature, and in any case often did not connect with a road – for example where 

the road stopped short of the shoreline. The MHW is an Ordnance Survey (OS) boundary 

product, which is also part of Land-Form Profile. The creation of partitions based on the 

combination of roads and MHW was previously undertaken by the OS as part of an earlier 

project. Figure 16 shows an example of partitions near the coast and demonstrates how their 

combined use results in closure of partitions and the creation of an exhaustive tessellation of 

the land covering Scotland. The selected roads and mean high water features were combined 

into a single shape file and the partitions were created using a ArcGIS 9.2 Feature to Polygon 

utility. It took approximately 12 minutes to create the partitions for the whole of Scotland 

(Figure 17). 

 

 
Figure 16: Partitions (b) created using Motorways, A road, B road and MHW data (a). Note that the 

problem of open partitions illustrated in Figure 15b is removed in Figure 15b by using MHW combined 

with road data. (Ordnance Survey © Crown Copyright. All rights reserved) 
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Figure 17: 14 000 Partitions for Scotland derived from important roads and MHW data. (Ordnance 

Survey © Crown Copyright. All rights reserved) 

 

Combining MHW and roads generated 14,000 partitions for Scotland (Figure 17); the area of 

each partition ranged in area from 2.67 square meters (a traffic island between a section of 

dual carriageway) up to a region covering 2,790 square kilometres – a vast remote region 

south of Fort William. 85% of the polygons were of a size less than 0.1 square kilometres, 

13% were of a size between 0.1 and 50 square kilometres, and the remaining 2% were 

between 50 and 3000 square kilometres. 

 

For the purposes of demonstrating the use of multiple processors, the partition dataset was 

broken into three partitioning datasets – each sent to a different processor. Partition by 

partition, the tree patches from the source database for that partition were selected, and 

processed. It could have been any process, but in this instance the interest was in aggregating 

tress patches into forest boundaries (Mackaness et al., in press) as illustrated in Figure 18. 

Figure 19 shows the result of this aggregation process for tree patches shown in Figure 14. 
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Figure 18: Merging regions together based on area and proximity among a group of tree patches. 

 

 
Figure 19: Result of aggregation of tree patches for region shown in Figure 14 

 

The time taken to process any given partition was dependent upon 1) the number of tree 

patches inside the partition, 2) their areal extent, and 3) the complexity of the boundary (the 

number of vertices used to store the boundary). Many partitions contained no forest, whilst 

one partition contained 12,127 tree patches. The partition of 12,127 tree patches took just over 

60 minutes to process. 

 

86% of the partitions contained no tree patches at all. 9% of the partitions contained 100 tree 

patches or less, and the remaining 5% of partitions contained between 100 and 12100 tree 

patches. Thus only 14% of the partitions contained any tree patches. Whilst using these 

partitions enabled the data to be processed, it indicates that it is far from ideal as a mechanism 

for partitioning forest data. Though we did not analyse the data, common sense suggests that 

there is probably a strong correlation between small partitions and the absence of tree patches.  
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Sometimes a forest region effectively extends across a road (Figure 14 and Figure 19). In this 

instance the road effectively intersects and divides a forest region. Because of the partitioning 

process, the objects will be processed independently of each other, if they lie in different 

partitions. There is therefore a need to ascertain whether forest patches lie either side of a 

boundary. Thus once all forest boundaries were generated within each partition, it was 

necessary to check whether any given forest abutting the partition boundary contained a 

‘neighbour’ in the adjoining partition(s). The nature of the aggregation algorithm made this 

process straightforward in that the aggregation algorithm marginally enlarged each forest 

patch such that forest patches laying either side of a partition already overlapped (Figure 19). 

The ArcGIS 9.2 ‘Aggregate Polygons’ utility was used for aggregation of neighbouring 

(overlapping) forest boundaries, removal of small resultant boundaries and dissolving of small 

holes. Figure 20a shows the result of this operation. As illustrated the overlapping forest 

boundaries lying in different partitions in Figure 14 and Figure 19 have been combined into 

single forest boundaries (as was done by cartographers when creating forest boundaries at 

1:250,000 dataset (OS Strategi
®

) as shown in Figure 20b. 

 

 
 

Figure 20: (a) Resulting forest boundaries for tree patches shown in Figure 14. (b)OS Strategi forest data 

(Ordnance Survey © Crown Copyright. All rights reserved) 

 

Table 4 summarises the processing times for the creation of partitions and resultant forest 

boundaries for the whole of Scotland. The whole process has reduced the number of tree 

patches in  the source database from 568,662 to 3,755 forest boundaries. This compares with 

3347 forest boundaries found in OS Strategi (1:250K). There are two main reasons for this 

difference. OS Strategi is a cartographic product thus many boundaries that are close have 

been merged and simplified; secondly OS Strategi is not as current and was created 

independently from a source database. 

 
Table 4: Processing times 

Process Time 

Creation of partitions using important roads and MHW for entire Scotland 12 (mins) 

Tree patches (total 568,662) into forest boundaries (total 100,443) within 

each partition for Scotland 

29.5 (in hours) 

Aggregation and simplification of forest boundaries across partitions from 

100 443 to 3 755 for Scotland 

13 (hours) 
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Conclusion 

We have demonstrated the use of different partitions as a basis of managing very large 

datasets. The research indicates that there is not a single ideal set of partitions. The type of 

partition required will depend on the type of analysis or generalisation intended – each set of 

partitions variously suitable for partitioning morphology, anthropogenic and natural regions. 

The research also indicates that combinations of different sets of partitions can increase the 

efficiency of processing and be used to form stronger correlations between the partitions and 

the class of feature being processed (more ‘meaningful’ partitions). ‘Meaningful’ partitions – 

ones that account for the geography of the phenomenon can make far more efficient the 

process of analysis and visualisation. 

 

We argue that by combining partitions we can 1) enrich the database, 2) make greater 

efficiencies in the handling of data, 3) support the creation of hierarchies, 4) offer innovative 

ways of visualising GI, and 5) enable more intuitive forms of analysis (linked to the 

granularity/hierarchy of the data). 
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