Applied Generalization and MRDB for Mapping Agencies using Open, Geospatial Clients

Vince Smith,
GeoMedia Desktop & Cartography Product Manager

June 20, 2008
First, Some History at Intergraph

- Research and algorithm development dates back to late 1980’s done under federal contracts.
 - Dynamic preview of generalization results.
 - Incorporation of elevation information.
 - Varied results with MGE Map Generalization and DynaGen.
- Evaluated partnerships with other vendors since 2004.
 - 1Spatial, formerly Laser-Scan
 - CPA
 - Some prototype work performed and reviewed
- Decided to once again (re-)develop generalization in 2007
Strategy & Packaging

- Re-implement DynaGen algorithms and principles into a GeoMedia environment using service oriented architecture (SOA)
- Incorporate latest research available.
- Overcome past deficiencies.
 - Generalization in context.
 - Customization.
- Model generalization added to GeoMedia Fusion product for building digital landscape models (DLMs).
- Cartographic generalization added to GeoMedia Map Publisher for building digital cartographic models (DCMs).
- Satisfy INSPIRE directives for harmonization with GeoMedia WebMap-based products.
- Lay groundwork for implementing MRDB and revision workflows
- Implement generalization in non-traditional geospatial applications
GeoMedia Principles & Architecture

Feature Geometry \[\rightarrow\] GeoMedia Functions \[\rightarrow\] Altered Feature Geometry

- Works on individual features, one at a time
- Static, not persisted
- User’s can add their own and have them participate throughout GeoMedia commands wherever expressions
- Visual Studio 2005, Visual Studio .NET

One or More Feature Geometries \[\rightarrow\] GeoMedia Pipes \[\rightarrow\] Altered Feature Geometry

- Basis of GeoMedia’s query system
- Persisted and associated to features or other queries
- Dynamic, for what-if analysis
GeoMedia Principles & Architecture

Generalization Pipelines

Feature Geometry

Buffer Zone → Conflate → Collapse → Aggregate → Simplify

Altered Feature Geometry

Modify Geometry

Feature Geometry

Buffer Zone → Conflate → Collapse → Aggregate → Simplify

Different Feature Geometry
consume published web services in industry standard web service clients

- thin clients
 - our own **OGC viewer**, available at www.ogcviewer.com
 - Skyline Globe
 - Ionic Red Spyder

- thick clients
 - GeoMedia, GeoMedia Professional, GeoMedia Viewer
 - NASA World Wind
 - Carbon Tools GAIA
 - Google Earth
Current Status

- **GeoMedia Fusion**
 - Schema mapping
 - Conflation
 - To be implemented as web services in 2008

- **GeoMedia Map Publisher**
 - Conflict detection strategies
 - Conflict resolution strategies including point displacement
 - Relates DLM to DCM

- **GeoMedia WebMap-based products**
 - Support most popular OGC I/F’s (WFS, WMS, WCS, WFS-T, Catalog Service)
 - SDI Basic and SDI Pro under development will target INSPIRE directives
Future Areas of Development and Research

- Architecture of web-based generalization.
- Performance considerations.
- Persistent generalized results verses rendered results.
- New applications for generalization.
Thank You –
ICA Commission on Generalization and MRDB

Vince Smith,
GeoMedia Desktop & Cartography Product Manager

June 20, 2008