City Model Generalization Quality Assessment using Nested Structure of Earth Mover’s Distance

Bo Mao1, Hongchao Fan2, Lars Harrie3, Yifang Ban1, Liqiu Meng2

1Geoinformatics, KTH, Sweden
2Department of Cartography, TUM, Germany
3GIS-centre, Lund University, Sweden
Outline

- Introduction
- Attribute Related Graph (ARG) generation
- ARG comparison with NEMD
- Case study
- Conclusions
Introduction

- Automatic generalization requires quality assessment
- Visual similarity is important
- Pattern recognition methods
- ARG+NEMD
ARG

- Represent the features of the models
ARG of City Model

- **Nodes**
 - Each building is a node
- **Relationships between nodes**
 - Spatial relationship between nodes
- **Example**

\[
v_1 = \{\text{ground plan } v_1\}
\]
\[
v_2 = \{\text{ground plan } v_2\}
\]
\[
r_{12} = (-5*(1/7), -5*(1/7))
\]
\[
r_{21} = (0.707, 0.707)
\]
ARG comparison
- Distance between nodes

\[d_{node}(v_1, v_2) = 0.5*D_{abs}(P_1, P_2) + 0.5*D_{rel}(P_1, P_2) \]

\[D_{abs}(P_1, P_2) = 1 - \frac{\text{Area}(P_1 \cap P_2)}{\text{Max}(\text{Area}(P_1), \text{Area}(P_2))} \]

\[
\begin{array}{c}
P_1 \\
1 \\
2 \\
P_2
\end{array}, \quad
\begin{array}{c}
P_2 \\
1 \\
2 \\
P_1 \cap P_2
\end{array}, \quad
\begin{array}{c}
P_2 \\
P_1 \cap P_2
\end{array}
\]

\[D_{abs} = 1 \ast 1/2 \quad D_{rel} = 1 \ast 0.25/2 \]
ARG comparison
- Distance between relationships

\[
r_1 = r(v_2, v_1) = (0.707, 0.707)
\]

\[
r_2 = r(v_3, v_4) = (1 \times 4/5, 1 \times 3/5) = (0.8, 0.6)
\]

\[
d_{\text{relation}}(r_1, r_2) = \frac{(0.707-0.8)^2 + (0.707-0.6)^2}{1+1} = 0.01
\]
ARG comparison
- NEMD calculation example

(a) Original building group

(b) Generalized building group
ARG comparison
- NEMD calculation example

\[d_{\text{inner}}(v_i, v'_i, v_j, v'_j) = (1 - p) \times d_{\text{node}}(v_j, v'_j) + p \times d_{\text{relation}}(r_{ij}, r'_{ij}) \]

\[d_{\text{note}}(v_0, v'_0) = 0.5 \times D_{\text{abs}}(P_0, P'_0) + 0.5 \times D_{\text{rel}}(P_0, P'_0) = 0.5 \times (1 - 1/3) + 0.5 \times (1 - 1/3) = 0.667 \]

\[d_{\text{relation}}(r_{00}, r'_{00}) = 0 \text{ since } r_{00} = r'_{00} = (0, 0) \]

\[d_{\text{inner}}(v_0, v'_0, v_0, v'_0) = (1 - p) \times d_{\text{note}}(v_0, v'_0) + p \times d_{\text{relation}}(r_{00}, r'_{00}) = 0.5 \times 0.667 + 0.5 \times 0 = 0.333 \]
ARG comparison
- NEMD calculation example

\[
D_{inner}(v_0, v'_0) = \begin{bmatrix}
 d_{inner}(v_0, v'_0, v_0, v'_0) & d_{inner}(v_0, v'_0, v_0, v'_1) \\
 d_{inner}(v_0, v'_0, v_1, v'_0) & d_{inner}(v_0, v'_0, v_1, v'_1) \\
 d_{inner}(v_0, v'_0, v_2, v'_0) & d_{inner}(v_0, v'_0, v_2, v'_1)
\end{bmatrix}
= \begin{bmatrix}
 0.333 & 0.875 \\
 0.667 & 0.910 \\
 1.056 & 0.323
\end{bmatrix}
\]

\[
d_{outer}(v_i, v'_{i'}) = \begin{cases}
 \frac{\sum_{n=1}^{Nc} \min(\text{Row}(D_{inner}(v_i, v'_{i'}), n))}{Nc} & \text{if } Nc < Nr \\
 \frac{\sum_{m=1}^{Nr} \min(\text{Col}(D_{inner}(v_i, v'_{i'}), m))}{Nr} & \text{if } Nc \geq Nr
\end{cases}
\]

\[
d_{outer}(v_0, v'_0) = (0.333 + 0.323)/3 = 0.219
\]
ARG comparison
- NEMD calculation example

\[
D_{\text{outer}} = \begin{bmatrix}
 d_{\text{outer}}(v_0, v'_0) & d_{\text{outer}}(v_0, v'_1) \\
 d_{\text{outer}}(v_1, v'_0) & d_{\text{outer}}(v_1, v'_1) \\
 d_{\text{outer}}(v_2, v'_0) & d_{\text{outer}}(v_2, v'_1)
\end{bmatrix}
= \begin{bmatrix}
 0.219 & 0.260 \\
 0.153 & 0.414 \\
 0.431 & 0.153
\end{bmatrix}
\]

\[
NEMD = \begin{cases}
\sum_{i=1}^{Nc} \min(\text{Row}(D_{\text{outer}},i)) & \text{if } Nc > Nr \\
\sum_{i=1}^{Nr} \min(\text{Col}(D_{\text{outer}},i)) & \text{if } Nc \leq Nr
\end{cases}
\]

NEMD of G and G': $0.219 + 0.153 + 0.153 = 0.525$
Case study

- City models are generalized by hand
- 10 Ph.D students from KTH are tested
- Select the better one they think from 2 results
Case study

(a) 5 buildings removed
NEMD: 12.86
10 votes

(b) Original Models

(c) 5 buildings removed
NEMD: 101.6
0 vote
Case study

(d) 5 buildings removed
 NEMD: 101.6
 0 vote

(e) Original Models

(f) 14 buildings removed
 NEMD: 50.0
 10 votes
Case study

(g) 25 buildings removed
NEMD: 164.5
1 vote

(h) Original Models

(i) 25 buildings removed
NEMD: 151.9
9 votes
Case study

(j) 14 buildings removed
NEMD: 50.0
7 votes

(k) Original Models

(l) 14 buildings removed
NEMD: 56.7
3 votes
User survey results

<table>
<thead>
<tr>
<th></th>
<th>(a) : (c)</th>
<th>(d) : (f)</th>
<th>(g) : (i)</th>
<th>(j) : (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User survey</td>
<td>10:0</td>
<td>0:10</td>
<td>1:9</td>
<td>7:3</td>
</tr>
<tr>
<td>NEMD</td>
<td>12.9:101.6</td>
<td>101.6:50.0</td>
<td>164.5:151.9</td>
<td>50.0:56.7</td>
</tr>
<tr>
<td>NEMD difference</td>
<td>89.3</td>
<td>51.6</td>
<td>12.6</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Conclusion

• ARG and NEMD for similarity evaluation
• The user survey shows the relationship between the proposed algorithm and the human visual perception
• Future improvement
 - Feature and relationship definition
 - Distance between nodes
 - Distance between relationships
 - Weights
Thanks for your attention!

Any Questions Please