Generating Strokes of Road Networks Based on Pattern Recognition

Xuechen Luan, Bisheng Yang

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China

Outline

Motivation

- Generating strokes based on road pattern recognition and perceptual grouping
- Experiments
- Conclusions

Motivation

What are Strokes (continuity lines)?

- Road segments that are continuous at intersections are prone to be regarded as naturally long lines of roads.
 - Thomson and Richardson, 1999

Strokes (continuity lines) are widely used in

- Network analysis
 - Porta et al., 2006a, 2006b; Jiang, 2007; Figueiredo and Amorim, 2007; Tomko, 2008; Jiang, 2009a, 20009b
- Selection & Generalisation
 - Jiang and Claramunt, 2004; Jiang and Harrie, 2004; Touya, 2007

Motivation

Traditional methods for generating strokes

- Road name
- Angle between neighboring road segments

Drawbacks

- Only appropriate to single line road networks
- Dual carriageways are split
- Discontinuous at road junctions

Generating strokes based on road pattern recognition and perceptual grouping

- Three steps to generate strokes in high level of details road networks
 - 1. Dual carriageways detection
 - 2. Complex road junctions detection
 - 3. Strokes connection across road junctions

Relationship between nearby road segments

- Angle
- Distance
- Directional relation

Dual carriageway pair classification

- 1:1 pair
- 1:n pair

Tracking dual carriageways

 Three parameters to measure the relationship between nearby road segments.

- Three parameters to measure the relationship between nearby road segments.
 - Angle
 - **Distance**

- Three parameters to measure the relationship between nearby road segments.
 - Angle

Dual carriageways pairs detection

- □ 1:1 dual carriageways pair
 - Can be regarded as the final detection result
 - Adjacent 1:1 pairs are integrated as a whole pair
- 1:n dual carriageways pair
 - Will be tracked and refined in the following step of our method.

- Tracking dual carriageways
 - Each part of the dual carriageways tracking routes will be stored in tree structures.
 - The shortest route from the conflicted node to the root node will be preserved.

2. Complex road junctions detection

Complex road junctions detection

- Similarities to DBSCAN algorithm (Ester et al., 1996)
 - Not required to know the number of clusters in the data a priori
 - Can find arbitrarily shaped clusters
 - Has a notion of noise

Complex road junctions detection

- Differences to DBSCAN algorithm
 - Network distance instead of Euclidean distance
 - Searching radius of each intersection is related to the length of strokes connecting to it. The longer the strokes are, the more likely the clusters are road junctions.

3. Strokes connection across road junctions

Connect strokes across road junctions

To judge the smooth property of road segments connecting to the junction, the angles between each two segments is calculated.

A en B

The original connection of strokes

The angles between strokes A and B

Connect strokes across road junctions

- Series of combinations of stroke connection.
- The combination with the max value of the sum of angles is preserved as the final connection result.

The sum of angle of one combination is 868.961

The max value of the sum of angle is 1003.273

Outline

- Motivation
- Generating strokes based on road pattern recognition and perceptual grouping
- Experiments
- Conclusions

Experiments

Data

- Wuhan (China) and Zurich navigation map datasets
- 11,598 road sections in the Whuan dataset and 11,396 in Zurich dataset
- Some roads are represented as dual carriageways and some road junctions are complicated.

Complex road junctions detection

Road junctions detection (Wuhan)

Complex road junctions detection

Road junctions detection (Zurich)

Connect strokes across road junctions

Grouping results (Wuhan)

Connect strokes across road junctions

Grouping results (Zurich)

Outline

- Motivation
- Generating strokes based on road pattern recognition and perceptual grouping
- Experiments
- Conclusions

Conclusions

Contribution

- An automated method for generating strokes from road networks
- Be able to deal with the road networks with dual carriageways and complex junctions and to keep the continuity of strokes
- Future work
 - Road network analysis and hierarchical selection
 - Dual carriageways and road junctions simplification
 - Road network generalisation

