

ICA-generalisation workshops (1995-2010)

From past generalisation workshops to future works on the field

Dirk Burghardt

Outline

- "Session topics" of the ICA generalisation workshops
- idea for the future

ICA generalisation workshops

- provide a good overview of current and past research in automated generalisation (http://aci.ign.fr/)
- papers and presentations are grouped together in sessions
 reflects main research interest in the past
- six main categories can be distinguished
 - 1. Production issues and vendor perspective
 - 2. Quality assessment, knowledge formalisation and acquisition
 - 3. Modelling of relations and semantics
 - 4. Generalisation operators
 - 5. MRDB and incremental update
 - 6. Generalisation process orchestration

I – production issues and vendor perspective

- contains paper describing both requirements as well as solutions from NMA map production
- this session are carried out at nearly all ICA-workshops
- good motivation for the workshop → trigger of research work
- possible extension involve other groups which use/develop generalisation tools
 - communities around free software developers, OSM
 - initiatives around INSPIRE with cartographic-technical oriented focus
 - contact to big industry player besides GIS vendors might be useful, e.g.
 - navigation industry (TomTom, Navtec, Tele Atlas, ...),
 - web mapping (Google, Microsoft, ...),
 - mobile applications (Apple, Sony Ericsson, Nokia, ...)

II - Quality assessment, knowledge formalisation and acquisition

- the start of the generalisation workshop series (1995) reflects the growing interest on automated generalisation at that time
 - → start with research on conflict detection and knowledge formalisation
- knowledge formalisation
 - quite popular in the middle of the 90ties with the attempt to replace batch processing by expert systems (later also by constraint-based approaches)
- constraint modelling
 - became important during the AGENT-project (1997-2000)
 - during the EuroSDR-project (2007-2010) definition of harmonised constraints for map production

III – modelling of relations and semantics

- focus on modelling spatial and hierarchical relations for generalisation purposes
 - preservation of topological relations by the generalisation algorithms
 - auxiliary data structures (Delaunay, Voronoi, constraint delaunay, networks, ...)
 - hierarchical data structures (BLG-tree, GAP-tree, quadtree, dendrogram, ...)
- relation modelling for the description of patterns such as alignments, neighbourhood relations, partitions, etc.
 - → data base enrichment vs. ad hoc computation
- semantic modelling and linked data
 - → Dagstuhl seminar (2009) with semantic web people

IV – generalisation operators and algorithms

- many investigations made on line simplification and smoothing
- but also research on more elaborate generalisation operations such as displacement, aggregation or typification
- in recent times interesting approaches proposed on generalisation of networks and mosaics
- improvements required for the generalisation of group of objects
 → depends strongly on the research of the third category (modelling of relations)

V – MRDB and incremental update generalisation operators

- this category contains research on Multi-Representation
 Databases with integrated or connected feature representations at different scales
- model generalisation on the basis of rule-based generalisation systems
- incremental update
- data integration and matching
 - matching to establish links between feature representation
 - distinction between schema matching and instance matching
 - GDI 2010 symposium (see presentation from Babs)

VI – generalisation process orchestration

- combines work on the overall generalisation process with orchestration and combination of generalisation operators
 - optimisation methods with the simultaneous application of different generalisation operations
 - constraint-based methods (including agents), which search for suitable operator sequences
- workflow management systems for the semi-automatic control of the generalisation processes
- situation dependent parameterisation of generalisation operator

	Session topics	95	97	99	01	02	03	04	05	06	07	08	09	10
I	production issues, NMA and vendor perspectives		X	Х	Χ		Х	Х	Х	Х	Х	X	Х	Х
II	quality assessment, measures and constraints	X	X	Х	X	X	Х					X	Х	Х
	knowledge acquisition and encoding	X	X				X				X			
	feature conflict detection, shape analysis	X	Χ			Χ	Χ		Χ					
III	modelling spatial and hierarchical structures		Χ	Χ		Χ					Х	Χ	Χ	Х
	modelling semantics and non-spatial structures		X	X						X			X	X
	data base enrichment						Χ	Χ	Χ		Х	Χ	Χ	Х
IV	generalisation operators	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ		X	Χ	Χ	
V	MRDB, database updating			Χ	Χ	Χ		Χ			X	Χ		
	model generalisation			Χ			Χ							
	matching								Χ					
VI	optimisation methods			Χ	X		X						X	X
	gen. process orchestration, agents, machine learning						X		Х			Χ	X	

Journals

- Weibel, R. (1995). Map Generalization. Special Issue of Cartography and Geographic Information Systems, Vol. 22, No.4.
- Weibel, R. and Jones, C. B. (1998). Issue on Map Generalization. Special Issue of Geoinformatica, Vol. 2, No.4.
- Richardson, D.E., and Mackaness, W. (1999). Computational Methods for Map Generalization. Special Issue of Cartography and Geographic Information Science, Vol. 26, No. 1.
- Jones, C. B. and Mark, J. W. (2005). Special Issue: Generalisation. International Journal of Geographical Information Science, Vol. 19, No. 8-9.
- Oosterom, van P. (2009). Special Issue: Generalisation. Computers, Environment and Urban Systems, Vol. 33, No. 5.

Books

- Müller, J.-C., Weibel, R. and Lagrange, J.-P. (1995). GIS and generalization
 Methodology and Practice. Taylor & Francis, GISDATA 1.
- Ruas, A., Mackaness, W.A. and Kilpeläinen, T. (2007). Challenges in the Portrayal of Geographic Information: Issues of Generalisation and Multi Scale Representation. Elsevier Science.

How to proceed?

Generalisation of web and mobile maps

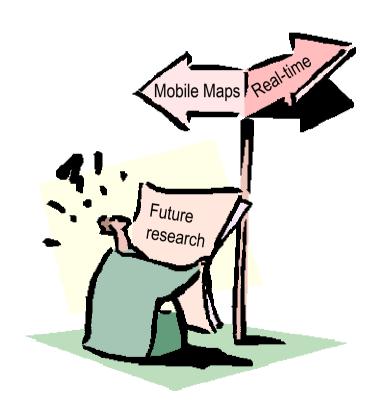
- besides production of different paper map series our research should also consider the web and mobile use of geoinformation
 - research in this community was/is driven by map production scheme of NMA,
 e.g. EuroSDR project → state of the art in ad-hoc web based generalisation (which maybe will also help the NMA in some years)
- user-centered design to support user interaction, e.g. information selection (interactive generalisation)
 - → tools for user to influence the generalisation degree of maps
- fixed scale levels get extended up to 20 level of detail in a web mapping environment → continuous generalisation
- real-time generalisation
 - with distinction of foreground and background information
 - usage of hierarchical and vario-scale data structures

Change from general to individual maps

- William at Dagstuhl: "abstraction of space in reaction to tasks"
- formalization of user needs
- focus on fitness-for-use maps which are maybe less beautiful from a cartographic point of view but pragmatic
- balance between automation and quality in the context of data integration: how much mismatched data become unacceptable?

Future research

- formalisation of semantics of the spatial information
 - semantic web / linked geodata (see presentation of Stefan Hahmann)
 - focus also on higher order concepts as combination of individual objects
 - → implicit structure and pattern of geographic phenomena
- consider different characteristics of data
 - new dimensions: 3D/perspective views, temporal data
 - user generated content (consistency, completeness, uncertainty)
 - huge masses of data (sensors, web2.0, ...)
- common test beds, shared operations via web services
 - syntactic and semantic interoperability
 - machine understandable description of service functionalities
 - web processing services as combination of generalisation operators



Upcoming topics

- only a few contributions on real-time generalisation, but seems to be important for user specific maps
- 3D-generalisation required for navigation solutions and web applications, already research on 3D-building generalisation;
- development of generalisation services triggered research on syntactic/semantic interoperability – interest from GDI
- generalisation for mobile applications

Session topics	95	97	99	01	02	03	04	05	06	07	08	09	10
real-time generalisation				Χ									
3D-generalisation						Χ	Х					Χ	
web based services and generalisation on demand								X	X	Х		X	
generalisation for mobile applications							X					X	X

Discussion