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1 Introduction 

 
Geospatial data researchers have used various techniques to assess different 

aspects of cartographic generalization. White (1985) and Jenks (1989) described 
geometric and perceptual methods to compare line generalization algorithms. Mackaness 
and Ruas (2007), categorized numerous ways evaluation has been applied in the map 
generalization process, and identified a need for additional evaluation methods to assess 
data after generalization, as opposed to evaluation methods for controlling or tuning 
generalization systems. Stoter and others (2009) developed evaluation methods to assess 
generalization outputs from commercial software systems based on measured or 
perceived satisfaction of constraints defined for generalization and mapping 
specifications. A large number of constraints (about 250) were identified by Stoter and 
others (2009), but only two measures were automated to evaluate constraint satisfaction: 
minimum area of buildings and minimum distance between buildings. Xiang and others 
(2008) developed an automated approach to assess the preservation of feature densities 
before and after generalization. Automated approaches that quantitatively assess the 
quality of cartographic generalization are not well established and require further 
research. 

An automated method to quantitatively compare a generalized dataset to an 
accepted standard, or benchmark is presented in this paper. The approach generates 
confidence intervals for two metrics: the coefficient of line correspondence (CLC) 
(Stanislawski, 2009a, 2009b), Buttenfield and Stanislawski, 2010), and the coefficient of 
area correspondence (CAC). Both measures quantify the amount of conflation between a 
generalized dataset and an independent benchmark dataset. The CLC metric and the 
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establishment of confidence intervals through bootstrapping (Fortin and others, 2002) is 
the subject of this paper. Bootstrapping is a nonparametric method that establishes a 
probability distribution for a statistical sample when conventional parametric 
assumptions cannot support reliable inference (Efron, 1981). Observed data are 
resampled with replacement to generate additional samples during bootstrapping. 

A variety of climate and terrain conditions exist in the United States, and optimal 
cartographic generalization techniques for one area of the country may not be suitable for 
another, particularly when working with surface hydrographic data. Nonparametric, 
bootstrapped confidence intervals for the CLC and CAC can be utilized to verify the 
suitability of tailoring generalization procedures to one or more specific landscape 
conditions. Ultimately, bootstrapping could help optimize development efforts of 
automated generalization for the United States. 

The Center of Excellence in Geospatial Information Science (CEGIS) of the U. S. 
Geological Survey (USGS) has been developing automated generalization tools to 
support display and delivery of The National Map (Stanislawski, 2008, 2009a, 2009b, 
Stanislawski and others, 2009, Brewer and others, 2009). Currently (August 2010), the 
approach is to transform any data theme of The National Map from its compiled level of 
detail to reduced levels of detail (LoD data versions, Cecconi and others, 2002) that can 
be delivered to users or used for smaller scale mapping. Each data theme is collected and 
maintained at the highest required level of detail, which can vary by theme. Reduced 
LoDs are generated through generalization processes that ideally are fully automated, 
thereby, minimizing data collection and database maintenance efforts. The National Land 
Survey of Finland has implemented such an approach to generate 1:100,000-scale (100K) 
level of detail for Finland from data compiled for the 1:5,000 to 1:10,000-scale level of 
detail (Pätynen and Ristioja, 2009). 

Confidence interval processing for a subbasin of data from the United States 
National Hydrography Dataset (NHD) is presented in this paper. The 1:24,000-scale 
(24K) data were pruned and generalized to create an LoD appropriate for displays 
ranging from 1:50,000 to 1:200,000 (referred to as a 50K LoD) by using procedures 
tailored for the local climate and terrain conditions of the subbasin. The resulting 50K 
LoD was compared to the benchmark 100K NHD by computing measures assessing 
correspondence between line features at the two scales, and then developing statistical 
confidence intervals that specify a range of acceptable correspondence values. 
Development of metrics and confidence intervals is discussed in the methodology section 
after a description of the data and generalization process. 

 
 

2   Methodology 
 
2.1 Test data 
 

The test subbasin (#10290107 in the 24K NHD), forms the watershed for the 
Pomme de Terre River, in the Midwest United States, in Missouri. The subbasin sits in 
the Ozark Plateau of the Interior Highlands physiographic province of the coterminous 
United States (Fenneman and Johnson, 1946). The subbasin covers about 2,190 square 
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kilometers (km2).  The landscape is hilly but not mountainous terrain, and the climate is 
humid. 

Landscape conditions for the subbasin are quantified from average elevation 
(318.5 meter (m)), standard deviation of elevation (15.41 m), and average slope (2.52 
percent rise) in 5-km grid cells over the subbasin as determined from the 1:250,000-scale 
USGS digital elevation model (DEM). Runoff estimates for the 5-km cells were obtained 
from James Falcone and Dave Wolock of the USGS. Runoff estimates were developed 
using the water-balance model described by Wolock and McCabe (1999) that estimates 
mean annual watershed runoff from 1951 to 2000.  Average runoff for the 5-km cells in 
the subbasin is 324 millimeters per year. 
 
2.2 Generalization process 
 

The high-resolution NHD data for this area were compiled from 24K source 
material. Deriving the LoD involves several generalization processes tailored to enrich 
the  hydrographic attributes with catchment areas, approximate upstream drainage areas 
(Stanislawski 2008, 2009b), and stream channel densities that enable cartographic display 
at scales ranging from 1:50,000 to about 1:200,000 after pruning, selection, simplification 
and custom symbolization.   

Enrichment processing serves multiple purposes, first to estimate local density 
values for each stream reach (confluence-to-confluence), which supports density 
stratification, also referred to as partitioning (Bobzien and others, 2008, Chaudhry and 
Mackaness, 2008). Second, approximate upstream drainage area values identify relative 
prominence for linear network features. Local density and upstream drainage areas are 
used to prune the network features to 50K. Pruning iteratively eliminates entire stream 
reaches while preserving topologic integrity of the flow network, until the subbasin 
channel density meets a user-specified threshold. Pruning can homogenize channel 
density for the entire subbasin, and, in some cases, pruning can stratify flow network 
features to protect geographically important density differences (for example those 
caused by geomorphic, volcanic, or glacial processes (Stanislawski and others, 2009)). 
Network features in the test data were manually stratified into normal and high density 
partitions; although the long term goal is to automate this step.   

Appropriate tolerance thresholds for pruning streams were estimated by using a 
variation of the Radical Law (Töpfer and Pillewizer 1966). The variation is based on 
feature length rather than number of features.  Preservation of feature lengths has long 
been accepted as an important validation of generalization quality; that is, cartographers 
generalize to eliminate details while preserving overall lengths. In the Pomme de Terre 
subbasin, pruning from 24K to the 50K LoD reduced total channel length from 1,923 km 
to 1,303 km in the high density partition, and from 1,507 km to 1,055 km in low density 
partition, yielding a total channel length of 2,358 km, which is a 31.3 percent reduction.  

After pruning, the remaining linear network features were simplified (vertices 
removed) by using ArcGIS “Simplify Line” tool (ESRI, 2009) with the bend simplify 
algorithm and a 100 m tolerance (Wang 1996, Wang and Muller 1998). Simplification 
further reduced the pruned data to 2,304 km, an additional 2.3 percent reduction. The 
topologic integrity of the flow network was maintained after pruning and simplification, 
which is essential for NHD model applications. 
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A minimum area of 0.02 km2 was applied as a general rule to prune polygon 
features. Feature type rules also were applied to differentially eliminate hydrographic 
areas and waterbodies; that is, ponds and lakes were treated differently than reservoirs, 
flood inundation areas, etc. (fig. 1). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  A part of the Pomme de Terre subbasin showing original 1:24,000-scale 
hydrography (left), and hydrography at the 1:50,000-scale level of detail after 
enrichment, pruning, and simplification (right).  
 
 
2.3 Calculating the coefficient of line correspondence (CLC) 
 

Through an automated process, the CLC measures the conflation of linear features 
in a generalized LoD with a standard benchmark, which in this case is the medium-
resolution, 100K NHD database. Medium-resolution NHD data were originally compiled 
through a manual generalization of photo-reduced mosaics of 24K hydrography. Over the 
years, the 24K NHD largely has been updated to more recent representations, whereas the 
100K has maintained original content. The CLC metric is based on channel length 
because pruning and simplification are intended to preserve feature length. Stream 
features are matched for the conflation assessment by confluence-to-confluence segments 
and by feature position; a small buffer compensates for slight displacements caused by 
simplification.  The coefficient is computed as follows: 
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CLC =  ∑  conflations                                                  .  

∑ conflations +  ∑ (omissions + commissions) 
where 

conflations length of conflated 100K benchmark channels 
omissions  length of channels in 100K benchmark but not in LoD, and 
comissions  length of channels in LoD but not in 100K benchmark. 

 
Commission lengths are divided by the benchmark-to-LoD length expansion factor, 
which compensates for higher granularity in the LoD feature representations 
(Stanislawski, 2009b). The CLC metric ranges between 1 (perfect correspondence 
between LoD and benchmark) and values approaching 0 (as increasing discrepancies 
appear in the generalized data).  

The subbasin was covered by a grid of 200 square cells with 3,670 m sides. A cell 
weight, equal to the area of the cell in the subbasin divided by the subbasin area, was 
determined for each cell to avoid edge bias. Weighted CLC values were computed for 
each cell by applying a 1.04 length expansion factor to reduce the length of the 50K LoD 
commission errors to the granularity of the benchmark lines, and then multiplying the cell 
weight by the cell CLC (Stanislawski, 2009b). 

 

 
Figure 2. Weighted coefficient of line correspondence (CLC) values determined for the 
200 cells in the Pomme de Terre subbasin (boundary shown in black). 
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Figure 2 shows the spatial distribution of weighted CLC values across the 

subbasin. Lowest values appear along the edge of the subbasin because relatively small 
proportions of these edge cells are inside the subbasin, which produces small cell 
weights. Furthermore, very few LoD flowline features are in the small sections of the 
subbasin inside these edge cells, where a perfect match or mismatch with the benchmark 
features is more likely. Small weights for the edge cells help reduce affects of sample 
bias for edge cells. 

The sum of the cell weights is 1.0000, and the sum of the 200 weighted CLC cell 
values is 0.8020, which represents the CLC value for the subbasin. The sums of the 
weighted proportions of commission and omission errors are 0.1358 and 0.0622, 
respectively, indicating that a greater proportion of features appear to be included in the 
generalized dataset than the proportion of benchmark features that are missing from the 
generalized data, which is expected for a 50K LoD comparison to a 100K benchmark.  
 
2.4 Confidence intervals for CLC 
 

A confidence interval for a parameter not only provides approximate lower and 
upper bounds for the unknown value, but also states how confident one is about capturing 
the true value of the parameter within the bounds. A narrow confidence interval with a 
high confidence level indicates a reliable estimate, whereas a wider interval may signal 
that there is high variability in the data thus making any estimate based on that data less 
precise.  For example the subbasin CLC (in this case 0.8020) measures how well the 
generalized LoD matches the standard benchmark dataset, and a confidence interval for a 
subbasin CLC provides a reliability measure for that particular CLC estimate. 
Furthermore, a CLC confidence interval can be used as a measure of the precision, or 
variability, of the CLC over the subbasin, and it can be furnished at standard levels of 
confidence, such as at the 90, 95, or 99 percent confidence levels.  

Hence, CLC confidence intervals can be used to compare multiple CLC values for 
the same subbasin, which may be generated to test several generalization alternatives that 
use slightly different selection parameters or simplification tolerances. Such CLC 
confidence interval comparisons may indicate whether the patterns of conflation error 
from alternate generalizations are slightly or dramatically different. Additionally, results 
from the same generalization process applied to nearby subbasins may be compared 
through confidence intervals for the subbasin CLCs. Consequently, with regard to the 
evaluation subtypes defined by Mackaness and Ruas (2007), subbasin CLC values and 
associated confidence intervals may be considered evaluations for tuning generalization 
parameters, or for assessing quality after generalization. 

Confidence intervals around the CLC metric were generated through a bootstrap 
resampling procedure (Fortin and others, 2002). Given a random sample from a 
population, the bootstrap procedure operates by resampling this original sample many 
times, treating it as if it were a population.  Resampling is done with replacement, so each 
resample can be different from the original sample. Each resample is called a bootstrap 
sample and each bootstrap sample can be used to estimate the parameter of interest (eg., 
the population mean). These repeated estimates yield a frequency distribution for the 
estimate. This distribution enables one to compute sampling variability of the estimate 
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and obtain statistics such as confidence intervals. When the resampling rate is very high, 
the frequency distribution can be assumed to replicate the probability distribution 
underlying the population from which the sample was initially drawn.  In the case of the 
generalized LoD, individual cell CLC values can be resampled from the set of 200 cells 
to generate a bootstrap.  To ensure that the resampling process reflects all types of 
weighted CLC values, a stratified random sampling strategy was used.    

 

 
 

Figure 3. Spatial distribution and range of weights assigned to stratification bins (1, 2, 
and 3) for the bootstrap resampling process for Pomme de Terre subbasin (boundary 
shown in black). 
 

The cells were assigned into three bins based on CLC weight, where edge cells 
with the lowest weights were assigned to bin 1, interior cells with the largest weights 
were assigned to bin 3, and remaining edge cells were assigned to bin 2. A total of 20, 66, 
and 114 cells were assigned to bins 1, 2, and 3, which is 10, 33, and 57 percent of the 200 
cells, respectively. These percentages stratified each 200-cell random sample for the 
bootstrap process to produce a similar weighting structure in each sample. Figure 3 
displays the spatial distribution of the bin stratification in the Pomme de Terre subbasin 
and the range of weights assigned to each bin.  
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Through automation, one thousand stratified random samples of 200 cells were 
resampled with replacement from the original set of 200 cells. Each resampled set of 200 
weighted CLC values included the same number of cells from each bin as in the original 
set. The resulting 1,000 average CLC values created the bootstrap frequency distribution 
from which non-parametric confidence intervals were obtained. 

The resulting bootstrapped interval at the 90 percent level of confidence for the 
weighted CLC value ranges from 0.7832 to 0.8205, with a bootstrapped average of 
0.8018 (figure 4).  The bootstrap distribution has a median of 0.8014 and mode of 0.801 
from 0.001 bins. The mean, median, and mode are equal in a normal distribution. 
Furthermore, the normally distributed bootstrapped values, centered on the weighted 
CLC indicate the bootstrapping process is well adapted for the dataset (fig. 4). More 
specifically, the number of cells (200) used for subdividing the subbasin and the bin 
assignment percentages used for maintaining the relative diversity in each sample appear 
to produce an acceptable distribution. Additional testing should be done to verify this 
observation.  

The bootstrapped distribution indicates the generalized results are within an 
acceptable level of reliability when assessed against the medium resolution (100K) NHD 
benchmark. The boostrapped average (0.8018) and original subbasin CLC value (0.8020) 
suggest that, loosely speaking, about 80 percent of the linear features match between the 
two tested datasets. The range between the upper and lower bounds of the 90 percent 
confidence interval is 0.0373, which is less than five percent of the bootstrapped average 
CLC, indicating that the average CLC estimate is fairly precise.  

 

 
Figure 4. Histogram and 90 percent confidence interval for the 1000 weighted coefficient 
of line correspondence (CLC) values bootstrapped from the 200 cells in the Pomme de 
Terre subbasin. 
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3   Discussion 
 
 Although additional metrics could be used to assess overall adequacy of 
generalized data, the CLC and associated bootstrapped confidence interval can be a 
valuable tool for optimizing development of automated generalization procedures. Fully 
automated procedures for generating weighted CLC values for a subbasin of NHD data 
and the associated bootstrapped confidence intervals require 2 to 3 hours. The spatial 
distribution of weighted CLC values identifies areas that have relatively more unmatched 
linear features between the 50K LoD and the benchmark dataset, and highlights parts of 
the generalized dataset where further processing refinements may be focused. In addition, 
the confidence interval for the CLC can be used to establish the spatial extent where 
tested hydrographic generalization procedures may be successfully applied, and where 
variations of existing approaches should be applied or alternative approaches developed.  
While further validation and interpretation is needed, bootstrap-based confidence 
intervals for the CLC as described, and similarly for the CAC, appear to be an original 
and viable contribution for metric assessment of generalized cartographic data. 
 Assessment based on CLC and CAC estimates hinges on the existence of an 
acceptable benchmark dataset. The 100K NHD has been used as the benchmark to 
compare to the 50K LoD for this study. Strictly speaking, the assessment described in this 
paper only applies to maps that display the tested 50K LoD NHD at the 100K scale. 
Furthermore, compilation standards of generalized and benchmark datasets must be 
considered when making CLC and CAC based comparisons. Are the generalized and 
benchmark datasets compiled with similar standards from similar time periods? Given 
these limitations, variability in CLC and CAC based comparisons should be expected 
over large regions, such as the United States. However, the CLC and CAC appear to 
furnish consistent, reliable automated approaches for comparing how well two datasets, 
representing similar features, match. 
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