
Ant Colony Optimization Applied to Map Generalization

Nigel Richards and Mark Ware (jmware@glam.ac.uk)

Faculty of Advanced Technology

University of Glamorgan

Wales, UK

1. Introduction

This paper presents details of an on-going PhD project that is studying the application of Ant

Colony optimization to map generalization. One of the objectives of the project is to compare

the performance of Ant Colony with a number of well known alternative approaches,

including Simulated Annealing. The paper begins by introducing the general ideas of Ant

Colony optimization. It then presents two map generalization problems, those of river

symbolization and network schematization. An Ant Colony solution to each problem is then

described. Experimental results are presented, and compared with Simulated Annealing

solutions.

2. Ant Colony Optimization (ACO)

An ant when searching for a food source will initially wander randomly. Upon finding food

it returns to its colony while laying down a volatile chemical trail called a Pheromone (Goss

et al, 1989;). Other foraging ants that smell such a pheromone trail are more likely to be

influenced to follow the path to the food source than continuing to wander randomly.

Probabilistically, the stronger the pheromone trail, the more likely that an ant will follow the

path. Pheromone trails are strengthened by each ant following the path. Initially, there may

be many different pheromone trails leading to a single food source. However, over time the

strength of the pheromone chemical evaporates reducing its attractiveness to other foraging

ants. Thus, as an ant walks, the pheromone it deposits evaporates behind it after a period of

time. Longer trails take more time for each ant to walk along and it follows that there is less

pheromone density over the trail as a result. Shorter routes to a food source will not take as

long to traverse, which helps to maintain a high degree of pheromone density because any

evaporation is compensated for by additional pheromone. The more ants that are attracted to

the trail the more pheromone density increases. Pheromone evaporation is a vital component

to the ant colony to prevent all routes having equal attractiveness. Over a period of time the

ants will converge on the shortest path to the food source. This collective ant behaviour of

pheromone laying, sensing and following paths to food source was the original inspiration for

ACO algorithms. In a simulated system, evaporation prevents an algorithm from converging

to a local optimum.

The ACO meta-heuristic (Dorigo et al, 1996) employs a colony of artificial ants that

collaborate to find a good solution to a discrete combinatorial optimisation problem. The

colony of artificial ants communicates with each other indirectly through the use of artificial

pheromone trails. Artificial ants possess some of the characteristics of their real counterparts

as well as additional traits that generally suit the optimisation problem at hand. The ACO

process will be described in more detail in the next section in the context of a river

symbolization problem.

3. River Symbolization

On large-scale maps, river networks are usually represented as a series of connected

polygons. At reduced scale these polygons are typically replaced by centrelines. These

centrelines are themselves likely to require line simplification. In addition, when displaying

centrelines (either on paper or electronically), the question of symbolization needs to be

addressed (i.e. what line thicknesses should be applied to the centreline?). This is not a

straightforward decision since line thickness along the length of the river centreline will not

be uniform, but will rather vary according to some criteria – typically based on river width.

This sequence of operations is illustrated in Figure 1.

Figure 1 - Generalizing a river polygon. (a) Original polygon. (b) Centreline. (c) Simplified centreline.

(d) Symbolized centreline.

The problem addressed here is that of automating the process of river centreline

symbolization (Figure 1(d)). A cartographer will usually split the river centreline into a fixed

number of segments. The location of each split (and hence the length of each segment) will

be decided according to predefined criteria. Each segment is then symbolized (i.e. allocated a

line thickness), again in accordance with predefined criteria. Consider the following example

criteria:

- River segment width >10 metres (m) shown by single line, 2mm width;

- River segment width between 7m and 10m shown by single line, 1mm width;

- River segment width between 4m and 7m shown by single line, 0.5mm width;

- River segment width < 4m shown by single line, 0.25mm width;

Automating the river segmentation process is non-trivial since, even though the width of a

river generally increases when moving from upstream to downstream, this increase will not

be monotonic. Therefore, identifying just a single location along a river at which its width

equals a particular value is likely to be not possible. Automation therefore requires the use of

algorithms that can produce good solutions given the initial predefined criteria, or rules. One

approach to developing these algorithms is to consider the problem (i.e. what are the best

positions along the centreline at which splits should occur) in terms of a search space, for

which there is a set of possible solutions. There are many algorithms that can be used to find

an optimal solution; in this paper ACO is used.

3.1 River Segmentation

A more formal definition of the problem now follows. Consider a polygon P representing a

river, and its associated centreline C, which is made up of n vertices (v1, v2, …., vn). It can be

assumed that C has been derived from P using an appropriate triangle-based technique (such

as those described by Jones et al (1995) and Regnauld and Mackaness (2006)). The goal here

is to divide C into k segments or divisions (d1, d2, …., dk), with divisions having associated

average widths W = (w1, w2, …., wk). The average width wi of a division di represents the

average width of the corresponding section of P, and is calculated by finding the average

height of its constituent triangles. The average widths W are referred to as the target widths,

and represent the initial target criteria, or constraints. It makes sense to consider average

widths of segments as opposed to actual widths at splitting points because of the non-

monotonic way in which a river increases (or decreases) in width when moving in a

downstream (or upstream) direction.

Dividing C is not straightforward. For example, consider a simple segmentation that gives

rise to DA, consisting of k divisions (dA1, dA2, …., dAk) of (approximately) equal length, with

average widths WA = (wA1, wA2, …., wAk). In order for DA to meet initial criteria, then W and

WA would need to be equal. W and WA are compared by calculating the value |W-WA| = |w1-

wA1| + |w2-wA2| + …. + |wk-wAk|. Typically, W and WA will not be equal (i.e. |W-WA| > 0).

The problem is therefore to automatically reposition the splitting points to produce a

segmentation DX such that |W-WX| = 0. Finding a set of split positions that results in |wi-wXi|

= 0 for all divisions is likely to prove impossible; the problem is therefore redefined as trying

to find a set of positions that minimizes width error. The width error ŴY is the value |W-WY|

associated with a segmentation DY.

Consider the situation where C is divided into 3 divisions of roughly equal length resulting in

DA, made up from (dA1, dA2, dA3) where dA1 = (v1, v2, …., va), dA2 = (va, va+1, …., vb) and dA3

= (vb, vb+1, …., vn). Now consider a slightly changed segmentation DB made up from (dB1,

dB2, dB3) where dB1 = (v1, v2, …., va-1), dB2 = (va-1, va, …., vb) and dB3 = (vb, vb+1, …., vn). That

is, DB is derived from DA by removing a single vertex (in this case va) from one segment (in

this case dA1) and adding to another (in this case dA2) resulting in the new segments dB1 and

dB2. In other words, the split location between a pair of adjacent divisions has moved by one

vertex in one direction or the other. It is now possible to compare the width errors ŴA and

ŴB associated with segmentations DA and DB. Potentially, one of the segmentations will have

a smaller error than the other. For example, if ŴB < ŴA, then it follows that DB is a better

segmentation than DA (at least, that is, in terms of the target criteria being used). In other

words, the reallocation of a vertex has resulted in an improved solution.

If the location of centreline splits is restricted to coincide with vertex locations only, then,

based on standard combinatorial theory, the total number of alternative segmentations of C

into k segments is:

N(S) = (n-2)! / (((n-2)-(k-1))!(k-1)!) - equation (1)

Note that (n-2) is used instead of n since vertices v1 and vn cannot be considered as splitting

locations. Furthermore, it follows that there are k-1 split vertices, each of which joins 2

adjacent divisions. The set of possible solutions S can be regarded as a search space, and the

problem of segmentation can be redefined as that of finding the segmentation DZ

in S with

smallest width error. One strategy might be to generate and evaluate all possible

combinations. However, this is not feasible for realistic data sets. For example, consider the

situation where n=1000 and k=5; this would result in over 40 billion possible segmentations.

An alternative strategy for finding DZ is therefore required.

3.2 ACO Solution for River Segmentation

The ACO algorithm is an iterative process. During an iteration each ant attempts to improve

the segmentation by moving split positions (by reallocating an edge from one segment to an

adjacent segment). Initially, the river centreline to be symbolised is split into the required

number of segments (5 in the example shown in Figure 2). The location of initial splits is

determined according to predefined criteria.

Figure 2 – River centreline divided into 5 initial segments (sections).

The quality of solution produced by ant colony optimisation algorithms is largely dependent

on the quality of the associated pheromone trail and heuristic information available to the ants

exploring the search space. It is vital therefore, to define a pheromone matrix (Figure 3) that

will contain pheromone values that refer to the desirability of moving the boundary of any

given segment. In order to achieve this, a pheromone matrix consisting of a pheromone

structure for each segment was implemented

Figure 3 – Pheromone matrix.

Each pheromone structure contains a pheromone value for every edge that may possibly be

positioned in its corresponding segment. In the current implementation, edges are allowed to

move to immediate neighbouring sections only - so Pheromone 1 (for Section 1) contains

Pheromone 1

Pheromone 2 Pheromone 3 Pheromone 4 Pheromone 5

Segment 1

edges

Segment 2

edges

values for all edges in Segment 1 and Segment 2. Pheromone 2 contains values for edges in

Segment 1, Segment 2 and Segment 3 – the other Pheromones are constructed on the same

basis.

The pheromone value corresponding to each edge in the matrix is initially set to a default

value (arrived at via initial experimentation). During an iteration, an ant will consider

moving an edge from one segment to another. A State Transition Rule formula is employed

to consider the desirability of the move by taking into consideration the pheromone value

associated with the edge in question in the pheromone matrix for the section the edge is to be

moved into. For example, if an ant is considering moving the boundary edge from segment 1

into segment 2, it will consider the pheromone value for that edge in segment 2 to determine

how good such a move has been in the past for other ants. The higher the pheromone value,

the more desirable the move is. A low value indicates that the move is not desirable as it has

not been beneficial to other ants.

As solutions are constructed, it is important to modify the pheromone matrix in order to

influence each ant’s decisions whilst searching for solutions. This is achieved through the

use of Local and Global pheromone updating rules. The rules ensure that the right balance is

maintained between ants exploring the search space and ants exploiting previous knowledge

through the pheromone matrix i.e. a good solution has associated high pheromone values in

the pheromone matrix.

Figure 4 illustrates a general view of the pheromone matrix after a number of iterations. The

red area indicates the strength of the pheromone value for each edge in the matrix.

Figure 4 – Pheromone matrix after a number of iterations.

The diagram shows that the pheromone values for edges in segment 1 are strong indicating

that better solutions are achieved when they are in segment 1. Segment 2 edges close to the

boundary have also resulted in good solutions when located in segment 1, however edges

further into segment 2 do not produce such good solutions. Edges at the end of segment 2

have very low pheromone values indicating that it is not desirable to consider moving these

edges into segment 1.

In addition to the pheromone matrix, heuristic information is also used in the probabilistic

State Transition Rule to determine the ants’ next step towards a solution. The ants’ can

exploit heuristic information in the form of problem-specific knowledge to determine the next

course of action during solution construction. In the case of the river symbolisation problem,

heuristic information is associated with each segment line and represented by a value

corresponding to a fraction of the cost of moving that line from its current segment to an

adjacent segment with respect to the current solution.

Pheromone Matrix

Pheromone 1 Pheromone 2 Pheromone 3 Pheromone 4 Pheromone 5

Segment 1

edges

Segment 2

edges

1. Initialise

Pheromone

2. Build ant

tour

3. Local

search. Find

best tour

4. Global

Pheromone

Update

3.3 ACO Algorithm

The overall ACO algorithm can be split into four distinct phases: Initialisation of pheromone,

colony tour building and local update, best solution update, and global pheromone update.

Initialise pheromone values on all edges

WHILE (stopping condition not met)

 Position each ant at start state

 FOR (each ant)

 Choose a new position according

to the state transition decision

rule

 Move to the new state

Apply pheromone evaporation on

chosen arc in pheromone matrix

 END FOR

 FOR (each ant)

Compute the cost of new solution

 IF (best solution found)

 Update best solution

 END IF

 Implement Local Search

Compute the cost of new solution

 IF (best solution found)

 Update best solution

 END IF

 END FOR

FOR (each arc in Best Solution)

Perform global pheromone update

 END FOR

END WHILE

Phase 1 requires setting an initial pheromone value for each of the arcs in the problem space.

Phase 2 involves the colony of ants constructing their own solutions by using the state

transition rule (pseudo-random proportional rule) described in the above equation. During

each iteration the local pheromone update rule is applied to modify the pheromone value on

the arc in question. When the entire colony of ants have completed their tour and found a

solution, Phase 3 takes place to record the best solution found to date, followed by Phase 4,

which updates the pheromone matrix for the arcs traversed by the ant that found the best

solution.

3.4 Initial Results

The ACO algorithm (together with triangulation and centreline generation algorithms) has

been implemented using Java. Initial experiments have been carried out using a simple river

polygon (Figure 5). Figure 6 shows the corresponding polygon triangulation and river

centreline. This centreline is made up from 490 vertices. The goal here is to divide the

centreline into 5 divisions (d1, d2, d3, d4, d5), with associated target average widths W =

(170.0, 130.0, 90.0, 50.0, 10.0). These widths represent screen units, but could just as easily

correspond to appropriate mapping units. Figure 7 shows the initial segmentation (where each

segment contains roughly equal number of vertices). This gives an initial width error Ŵinitial =

87.0. Using equation (1) it follows that the total number of possible segmentations =

2,334,078,990. Figure 8 shows the segmentation after 15000 iterations, at which point the

width error has reduced to 19.9 (achieved in a time of less than 1 second). If the optimization

is left to run for longer, then the result improves further. The best result achieved to date is a

width error of 17.24 (after approximately 5 million iterations).

For purposes of comparison, a Simulated Annealing solution has also been implemented

(Richards et al, 2010). At 15000 iterations it yields a width error of 24.7. It also achieves a

best width error of 17.24 (but this took 220 million iterations).

Figure 5 - Simple river polygon.

Figure 6 - Triangulated river polygon and centreline.

Figure 7 - Original segmentation.

Figure 8 – Segmentation produced by ACO after 15000 iterations.

4. Network Schematization

Perhaps the most well known example of a schematic map is the London Tube map designed

by Harry Beck (see http://www.tfl.gov.uk/tfl/maps-home.shtml for this and many hundreds of

http://www.tfl.gov.uk/tfl/maps-home.shtml

other examples). The types of schematic maps dealt with in this paper have the following

properties:

(i) They are derived from network data sets consisting of polylines, edges and

vertices;

(ii) Polylines are simplified to their most elementary shapes;

(iii) They are topologically equivalent to the input network;

(iv) If possible, edges should lie in horizontal, vertical or diagonal direction;

(v) If possible, edges should have length greater than some minimum length

(effectively increasing map scale in congested areas).

This paper addresses points (iii)-(v), considering them an optimization problem. Given an

input network (pre-simplified using a suitable line generalization algorithm), an alternative

state can be obtained by displacing one or more of the network vertices, resulting in re-

orientation, shortening and lengthening of edges. The search space being examined is the set

of all possible states of the input network. Each state can be evaluated in terms of how closely

it resembles a schematic map (i.e. meets a set of constraints based on (iii)-(v)). However,

finding the best state by exhaustively generating and evaluating all possible states in not

possible, as for any realistic data set the search space will be excessively large. An ACO

algorithm for producing schematic maps for network data has therefore been developed.

4.1 The algorithm

Each vertex in the network is assigned two matrices– a displacement matrix and a pheromone

matrix. The displacement matrix is centred over the original location of the vertex and its

cells represent all possible locations into which the vertex can move. Cell size governs the

minimum distance a vertex can be displaced. Cell size together with matrix size (the number

of cells) determines the maximum distance a vertex can move. Each displacement matrix cell

has a corresponding cell in the pheromone matrix. The value of a pheromone cell represents

pheromone strength at its corresponding location at any given time; to begin, all pheromone

matrix values are initialized to a pre-determined value.

ACO is an iterative process involving a colony of artificial ants working in parallel. Ant

colony size is an input parameter to the algorithm (there is no set value). For each iteration

each ant starts with the original network (no vertex displacement) and builds its own solution

by performing a fixed number (e.g. 1000) of vertex displacements. After each displacement

the network is evaluated (against the constraints) and assigned a cost. For each displacement,

a vertex is randomly selected and allowed to move from its current matrix location to an

adjacent matrix cell. The direction of vertex movement is chosen by a so-called state

transition rule, which is influenced by the vertex’s associated pheromone matrix (higher

values encourage movement) and additional heuristic information (e.g. immediate cost

benefit). Within each iteration, a displacement triggers a corresponding reduction of

pheromone value (this so-called local update encourages a more complete exploration of the

search space). Note that for each vertex all ants are accessing and updating the same

pheromone matrix. At the end of each iteration each ant will have produced a solution. The

best solution (lowest cost) is used to globally update all pheromone matrices to strengthen

pheromone values along the paths from original vertex locations to their new locations in this

best solution. This encourages better moves during the iterations that follow. The process

repeats until stopping conditions (e.g. maximum number of iterations, maximum time,

acceptable cost, etc.) are met.

4.2 Initial results

The ACO algorithm has been implemented using Java. Initial experiments have been carried

out using OSCAR road centre line data for the St. David’s area of West Wales. The original

test data consisted of 205 edges, made up from a total of 187 vertices. This data is pre-

generalized using the ArcGIS Simply Line tool; with point remove and topological error

check options selected this makes use of an enhanced version of the Douglas-Peucker

algorithm. A weed tolerance value of 50(m) is used in these experiments, resulting in 67

edges made up from a total of 59 vertices. The simplified data (Figure 9) acts as input to the

ACO algorithm. The initial cost (in terms of constraints) for the input network is 640.5.

Figure 9 – Input road network. Cost = 640.5.

Figure 10 shows output produced by ACO after a total of 976,000 vertex displacements (in

less than 2 seconds). The cost has been reduced to 99.5. For purposes of comparison, a

Simulated Annealing (SA) solution (based on Ware et al, 2006) has also been implemented in

Java. The best SA solution generated to date (shown in Figure 11) has a cost of 171.1 (after

3,450,000 vertex displacements). It was also noted that after 25,000 vertex displacements,

ACO cost had reduced to 179.1 and SA cost had reduced to 333.0.

Figure 10 – Schematic map produced by ACO. Cost = 99.5, number of vertex displacements =

976,000.

Figure 11 – Schematic map produced by SA. Cost = 171.1, number of vertex displacements = 3,450,000.

5. Conclusion

This paper has presented an ACO solution to the particular problems of river segmentation

and network schematization. It has shown that ACO can be successfully applied to a

segmented river centreline for the purpose of reducing width error. When compared to a

Simulated Annealing solution, ACO is able to reduce width error at a faster rate (i.e. in less

iterations). It should be noted that both algorithms achieve the same overall best result –

which maybe suggests that the global optimum has been found. Future work will concentrate

on testing the ACO on more realistic data sets. It is also noted that measuring segmentation

quality on width error alone might be too simplistic an approach. The intention is also to

apply ACO to other cartographic problems. Some work has been carried out on developing

an ACO solution to the well known Schematic Map problem (Ware et al, 2006) and the initial

results, reported here, indicate that ACO again outperforms Simulated Annealing (both in

terms of quality of result and processing times).

6. References

Dorigo, M., Maniezzo, V. and Colorni, A., 1996, Ant System: Optimization by a Colony of

Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics–Part B, Volume

26, Number 1, p. 29–41.

Goss, S., Aron, S., Deneubourg, J.-L. and Pasteels, J.M.,1989, Self-organized shortcuts in

the Argentine ant. Naturwissenschaften, Volume 76, p. 579–581.

Jones, C.B., Bundy, G.Ll. and Ware, J.M., 1995, Map generalisation with a triangulated data

structure, Cartography and GIS, Volume 22, Number 4, p. 317-331.

Regnauld, N. and Mackaness, W., 2006, Creating a hydrographic network from its

cartographic representation: A case study using Ordnance Survey MasterMap data,

International Journal of GIS, Volume 20, Number 6, p.611–631.

Richards, N., Ware, J.M., Thomas, N. and Ware, J.A., 2010, Automated map generalization:

application of simulated annealing to river symbolization, accepted for 2010 International

Conference on Artificial Intelligence (Las Vegas, July 2010).

Ware, J.M., Anand, S., Taylor, G.E. and Thomas, N., 2006, Automatic Generation of

Schematic Maps for Mobile GIS Applications, Transactions in GIS, Volume 10, Issue 1, p.

25-42.

Appendix 1 – ACO and Simulated Annealing Applied to Schematic Map Problem

Original Road Network – cost (in terms of schematic map constraints – see Ware et al, 2006)

= 640.

Schematized Road Network Produced Using ACO – cost = 99, number of iterations =

900000.

Schematized Road Network Produced Using Simulated Annealing – cost = 171, number of

iterations = 3500000.

