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1. Introduction 

 

This paper presents details of an on-going PhD project that is studying the application of Ant 

Colony optimization to map generalization. One of the objectives of the project is to compare 

the performance of Ant Colony with a number of well known alternative approaches, 

including Simulated Annealing. The paper begins by introducing the general ideas of Ant 

Colony optimization. It then presents two map generalization problems, those of river 

symbolization and network schematization. An Ant Colony solution to each problem is then 

described. Experimental results are presented, and compared with Simulated Annealing 

solutions.  

 

2. Ant Colony Optimization (ACO) 

 

An ant when searching for a food source will initially wander randomly.  Upon finding food 

it returns to its colony while laying down a volatile chemical trail called a Pheromone (Goss 

et al, 1989;). Other foraging ants that smell such a pheromone trail are more likely to be 

influenced to follow the path to the food source than continuing to wander randomly.  

Probabilistically, the stronger the pheromone trail, the more likely that an ant will follow the 

path.  Pheromone trails are strengthened by each ant following the path.  Initially, there may 

be many different pheromone trails leading to a single food source.  However, over time the 

strength of the pheromone chemical evaporates reducing its attractiveness to other foraging 

ants. Thus, as an ant walks, the pheromone it deposits evaporates behind it after a period of 

time. Longer trails take more time for each ant to walk along and it follows that there is less 

pheromone density over the trail as a result.  Shorter routes to a food source will not take as 

long to traverse, which helps to maintain a high degree of pheromone density because any 

evaporation is compensated for by additional pheromone.  The more ants that are attracted to 

the trail the more pheromone density increases. Pheromone evaporation is a vital component 

to the ant colony to prevent all routes having equal attractiveness.  Over a period of time the 

ants will converge on the shortest path to the food source. This collective ant behaviour of 

pheromone laying, sensing and following paths to food source was the original inspiration for 

ACO algorithms. In a simulated system, evaporation prevents an algorithm from converging 

to a local optimum. 

 

The ACO meta-heuristic (Dorigo et al, 1996) employs a colony of artificial ants that 

collaborate to find a good solution to a discrete combinatorial optimisation problem. The 

colony of artificial ants communicates with each other indirectly through the use of artificial 

pheromone trails. Artificial ants possess some of the characteristics of their real counterparts 

as well as additional traits that generally suit the optimisation problem at hand. The ACO 

process will be described in more detail in the next section in the context of a river 

symbolization problem. 

 

  



3. River Symbolization 

On large-scale maps, river networks are usually represented as a series of connected 

polygons. At reduced scale these polygons are typically replaced by centrelines. These 

centrelines are themselves likely to require line simplification.  In addition, when displaying 

centrelines (either on paper or electronically), the question of symbolization needs to be 

addressed (i.e. what line thicknesses should be applied to the centreline?). This is not a 

straightforward decision since line thickness along the length of the river centreline will not 

be uniform, but will rather vary according to some criteria – typically based on river width. 

This sequence of operations is illustrated in Figure 1. 

 

 
 

Figure 1 - Generalizing a river polygon. (a) Original polygon. (b) Centreline. (c) Simplified centreline. 

(d) Symbolized centreline. 

 

The problem addressed here is that of automating the process of river centreline 

symbolization (Figure 1(d)). A cartographer will usually split the river centreline into a fixed 

number of segments. The location of each split (and hence the length of each segment) will 

be decided according to predefined criteria. Each segment is then symbolized (i.e. allocated a 

line thickness), again in accordance with predefined criteria. Consider the following example 

criteria: 

 

- River segment width >10 metres (m) shown by single line, 2mm width; 

- River segment width between 7m and 10m shown by single line, 1mm width; 

- River segment width between 4m and 7m shown by single line, 0.5mm width; 

- River segment width < 4m shown by single line, 0.25mm width; 

 

Automating the river segmentation process is non-trivial since, even though the width of a 

river generally increases when moving from upstream to downstream, this increase will not 

be monotonic. Therefore, identifying just a single location along a river at which its width 

equals a particular value is likely to be not possible. Automation therefore requires the use of 

algorithms that can produce good solutions given the initial predefined criteria, or rules.  One 

approach to developing these algorithms is to consider the problem (i.e. what are the best 

positions along the centreline at which splits should occur) in terms of a search space, for 

which there is a set of possible solutions.  There are many algorithms that can be used to find 

an optimal solution; in this paper ACO is used.  
 

  



3.1 River Segmentation 

 

A more formal definition of the problem now follows. Consider a polygon P representing a 

river, and its associated centreline C, which is made up of n vertices (v1, v2, …., vn). It can be 

assumed that C has been derived from P using an appropriate triangle-based technique (such 

as those described by Jones et al (1995) and Regnauld and Mackaness (2006)). The goal here 

is to divide C into k segments or divisions (d1, d2, …., dk), with divisions having associated 

average widths W = (w1, w2, …., wk). The average width wi of a division di represents the 

average width of the corresponding section of P, and is calculated by finding the average 

height of its constituent triangles. The average widths W are referred to as the target widths, 

and represent the initial target criteria, or constraints. It makes sense to consider average 

widths of segments as opposed to actual widths at splitting points because of the non-

monotonic way in which a river increases (or decreases) in width when moving in a 

downstream (or upstream) direction. 

 

Dividing C is not straightforward. For example, consider a simple segmentation that gives 

rise to DA, consisting of k divisions (dA1, dA2, …., dAk) of (approximately) equal length, with 

average widths WA = (wA1, wA2, …., wAk). In order for DA to meet initial criteria, then W and 

WA would need to be equal. W and WA are compared by calculating the value |W-WA| = |w1-

wA1| + |w2-wA2| + …. + |wk-wAk|. Typically, W and WA will not be equal (i.e. |W-WA| > 0). 

The problem is therefore to automatically reposition the splitting points to produce a 

segmentation DX such that |W-WX| = 0. Finding a set of split positions that results in |wi-wXi| 

= 0 for all divisions is likely to prove impossible; the problem is therefore redefined as trying 

to find a set of positions that minimizes width error. The width error ŴY is the value |W-WY| 

associated with a segmentation DY.  
 

Consider the situation where C is divided into 3 divisions of roughly equal length resulting in 

DA, made up from (dA1, dA2, dA3) where dA1 = (v1, v2, …., va), dA2 = (va, va+1, …., vb) and dA3 

= (vb, vb+1, …., vn). Now consider a slightly changed segmentation DB made up from (dB1, 

dB2, dB3) where dB1 = (v1, v2, …., va-1), dB2 = (va-1, va, …., vb) and dB3 = (vb, vb+1, …., vn). That 

is, DB is derived from DA by removing a single vertex (in this case va) from one segment (in 

this case dA1) and adding to another (in this case dA2) resulting in the new segments dB1 and 

dB2. In other words, the split location between a pair of adjacent divisions has moved by one 

vertex in one direction or the other.  It is now possible to compare the width errors ŴA and 

ŴB associated with segmentations DA and DB. Potentially, one of the segmentations will have 

a smaller error than the other. For example, if ŴB < ŴA, then it follows that DB is a better 

segmentation than DA (at least, that is, in terms of the target criteria being used). In other 

words, the reallocation of a vertex has resulted in an improved solution. 

 

If the location of centreline splits is restricted to coincide with vertex locations only, then, 

based on standard combinatorial theory, the total number of alternative segmentations of C 

into k segments is: 

N(S) = (n-2)! / (((n-2)-(k-1))!(k-1)!)  - equation (1) 

Note that (n-2) is used instead of n since vertices v1 and vn cannot be considered as splitting 

locations. Furthermore, it follows that there are k-1 split vertices, each of which joins 2 

adjacent divisions. The set of possible solutions S can be regarded as a search space, and the 

problem of segmentation can be redefined as that of finding the segmentation DZ
 
in S with 

smallest width error. One strategy might be to generate and evaluate all possible 



combinations. However, this is not feasible for realistic data sets. For example, consider the 

situation where n=1000 and k=5; this would result in over 40 billion possible segmentations. 

An alternative strategy for finding DZ is therefore required. 

3.2 ACO Solution for River Segmentation 

The ACO algorithm is an iterative process. During an iteration each ant attempts to improve 

the segmentation by moving split positions (by reallocating an edge from one segment to an 

adjacent segment). Initially, the river centreline to be symbolised is split into the required 

number of segments (5 in the example shown in Figure 2). The location of initial splits is 

determined according to predefined criteria. 

 

 
Figure 2 – River centreline divided into 5 initial segments (sections). 

 

The quality of solution produced by ant colony optimisation algorithms is largely dependent 

on the quality of the associated pheromone trail and heuristic information available to the ants 

exploring the search space.  It is vital therefore, to define a pheromone matrix (Figure 3) that 

will contain pheromone values that refer to the desirability of moving the boundary of any 

given segment.  In order to achieve this, a pheromone matrix consisting of a pheromone 

structure for each segment was implemented 

 
 

 

 
 

 
 

 
Figure 3 – Pheromone matrix. 

 
Each pheromone structure contains a pheromone value for every edge that may possibly be 

positioned in its corresponding segment.  In the current implementation, edges are allowed to 

move to immediate neighbouring sections only - so Pheromone 1 (for Section 1) contains 

Pheromone 1 

 

Pheromone 2 Pheromone 3 Pheromone 4 Pheromone 5 

Segment 1 

edges 

Segment 2 

edges 



values for all edges in Segment 1 and Segment 2.  Pheromone 2 contains values for edges in 

Segment 1, Segment 2 and Segment 3 – the other Pheromones are constructed on the same 

basis. 

 
The pheromone value corresponding to each edge in the matrix is initially set to a default 

value (arrived at via initial experimentation).  During an iteration, an ant will consider 

moving an edge from one segment to another.  A State Transition Rule formula is employed 

to consider the desirability of the move by taking into consideration the pheromone value 

associated with the edge in question in the pheromone matrix for the section the edge is to be 

moved into.  For example, if an ant is considering moving the boundary edge from segment 1 

into segment 2, it will consider the pheromone value for that edge in segment 2 to determine 

how good such a move has been in the past for other ants.  The higher the pheromone value, 

the more desirable the move is.  A low value indicates that the move is not desirable as it has 

not been beneficial to other ants. 

 

As solutions are constructed, it is important to modify the pheromone matrix in order to 

influence each ant’s decisions whilst searching for solutions.  This is achieved through the 

use of Local and Global pheromone updating rules.  The rules ensure that the right balance is 

maintained between ants exploring the search space and ants exploiting previous knowledge 

through the pheromone matrix i.e. a good solution has associated high pheromone values in 

the pheromone matrix. 

 

Figure 4 illustrates a general view of the pheromone matrix after a number of iterations.  The 

red area indicates the strength of the pheromone value for each edge in the matrix. 

 

 
 

 
 

 

 
 

 
Figure 4 – Pheromone matrix after a number of iterations. 

 
The diagram shows that the pheromone values for edges in segment 1 are strong indicating 

that better solutions are achieved when they are in segment 1.  Segment 2 edges close to the 

boundary have also resulted in good solutions when located in segment 1, however edges 

further into segment 2 do not produce such good solutions.  Edges at the end of segment 2 

have very low pheromone values indicating that it is not desirable to consider moving these 

edges into segment 1. 

 

In addition to the pheromone matrix, heuristic information is also used in the probabilistic 

State Transition Rule to determine the ants’ next step towards a solution.  The ants’ can 

exploit heuristic information in the form of problem-specific knowledge to determine the next 

course of action during solution construction.  In the case of the river symbolisation problem, 

heuristic information is associated with each segment line and represented by a value 

corresponding to a fraction of the cost of moving that line from its current segment to an 

adjacent segment with respect to the current solution.   

Pheromone Matrix 

Pheromone 1 Pheromone 2 Pheromone 3 Pheromone 4 Pheromone 5 

Segment 1 

edges 

Segment 2 

edges 



1.  Initialise 

Pheromone 

2.  Build ant  

tour 

3.  Local 

search. Find 

best tour 

4. Global 

Pheromone 

Update 

3.3 ACO Algorithm 

The overall ACO algorithm can be split into four distinct phases: Initialisation of pheromone, 

colony tour building and local update, best solution update, and global pheromone update. 

 

 
 

Initialise pheromone values on all edges 

  

WHILE (stopping condition not met) 

 Position each ant at start state 

 FOR (each ant) 

 Choose a new position according 

to the state transition decision 

rule 

  Move to the new state 

Apply pheromone evaporation on 

chosen arc in pheromone matrix 

 END FOR 

 

 FOR (each ant) 

Compute the cost of new solution 

   IF (best solution found) 

    Update best solution 

   END IF 

   Implement Local Search 

Compute the cost of new solution 

   IF (best solution found) 

    Update best solution 

   END IF 

  END FOR 

 

FOR (each arc in Best Solution) 

Perform global pheromone update 

  END FOR 

END WHILE 

 



Phase 1 requires setting an initial pheromone value for each of the arcs in the problem space.  

Phase 2 involves the colony of ants constructing their own solutions by using the state 

transition rule (pseudo-random proportional rule) described in the above equation. During 

each iteration the local pheromone update rule is applied to modify the pheromone value on 

the arc in question.  When the entire colony of ants have completed their tour and found a 

solution, Phase 3 takes place to record the best solution found to date, followed by Phase 4, 

which updates the pheromone matrix for the arcs traversed by the ant that found the best 

solution. 

 

3.4 Initial Results 

 

The ACO algorithm (together with triangulation and centreline generation algorithms) has 

been implemented using Java. Initial experiments have been carried out using a simple river 

polygon (Figure 5). Figure 6 shows the corresponding polygon triangulation and river 

centreline. This centreline is made up from 490 vertices. The goal here is to divide the 

centreline into 5 divisions (d1, d2, d3, d4, d5), with associated target average widths W = 

(170.0, 130.0, 90.0, 50.0, 10.0). These widths represent screen units, but could just as easily 

correspond to appropriate mapping units. Figure 7 shows the initial segmentation (where each 

segment contains roughly equal number of vertices). This gives an initial width error Ŵinitial = 

87.0. Using equation (1) it follows that the total number of possible segmentations = 

2,334,078,990. Figure 8 shows the segmentation after 15000 iterations, at which point the 

width error has reduced to 19.9 (achieved in a time of less than 1 second). If the optimization 

is left to run for longer, then the result improves further. The best result achieved to date is a 

width error of 17.24 (after approximately 5 million iterations).  

 

For purposes of comparison, a Simulated Annealing solution has also been implemented 

(Richards et al, 2010). At 15000 iterations it yields a width error of 24.7. It also achieves a 

best width error of 17.24 (but this took 220 million iterations). 

 

 
 

Figure 5 - Simple river polygon. 

 



 
 

Figure 6 - Triangulated river polygon and centreline. 

 

 
 

Figure 7 - Original segmentation. 

 

 
 

 
 

Figure 8 – Segmentation produced by ACO after 15000 iterations. 

 
4. Network Schematization 

 

Perhaps the most well known example of a schematic map is the London Tube map designed 

by Harry Beck (see http://www.tfl.gov.uk/tfl/maps-home.shtml for this and many hundreds of 

http://www.tfl.gov.uk/tfl/maps-home.shtml


other examples). The types of schematic maps dealt with in this paper have the following 

properties: 

 

(i) They are derived from network data sets consisting of polylines, edges and 

vertices; 

(ii) Polylines are simplified to their most elementary shapes; 

(iii) They are topologically equivalent to the input network; 

(iv) If possible, edges should lie in horizontal, vertical or diagonal direction; 

(v) If possible, edges should have length greater than some minimum length 

(effectively increasing map scale in congested areas). 

 

This paper addresses points (iii)-(v), considering them an optimization problem. Given an 

input network (pre-simplified using a suitable line generalization algorithm), an alternative 

state can be obtained by displacing one or more of the network vertices, resulting in re-

orientation, shortening and lengthening of edges. The search space being examined is the set 

of all possible states of the input network. Each state can be evaluated in terms of how closely 

it resembles a schematic map (i.e. meets a set of constraints based on (iii)-(v)). However, 

finding the best state by exhaustively generating and evaluating all possible states in not 

possible, as for any realistic data set the search space will be excessively large. An ACO 

algorithm for producing schematic maps for network data has therefore been developed. 

 

4.1 The algorithm 

 

Each vertex in the network is assigned two matrices– a displacement matrix and a pheromone 

matrix. The displacement matrix is centred over the original location of the vertex and its 

cells represent all possible locations into which the vertex can move. Cell size governs the 

minimum distance a vertex can be displaced. Cell size together with matrix size (the number 

of cells) determines the maximum distance a vertex can move.  Each displacement matrix cell 

has a corresponding cell in the pheromone matrix. The value of a pheromone cell represents 

pheromone strength at its corresponding location at any given time; to begin, all pheromone 

matrix values are initialized to a pre-determined value. 

 

ACO is an iterative process involving a colony of artificial ants working in parallel. Ant 

colony size is an input parameter to the algorithm (there is no set value). For each iteration 

each ant starts with the original network (no vertex displacement) and builds its own solution 

by performing a fixed number (e.g. 1000) of vertex displacements. After each displacement 

the network is evaluated (against the constraints) and assigned a cost. For each displacement, 

a vertex is randomly selected and allowed to move from its current matrix location to an 

adjacent matrix cell. The direction of vertex movement is chosen by a so-called state 

transition rule, which is influenced by the vertex’s associated pheromone matrix (higher 

values encourage movement) and additional heuristic information (e.g. immediate cost 

benefit). Within each iteration, a displacement triggers a corresponding reduction of 

pheromone value (this so-called local update encourages a more complete exploration of the 

search space). Note that for each vertex all ants are accessing and updating the same 

pheromone matrix. At the end of each iteration each ant will have produced a solution. The 

best solution (lowest cost) is used to globally update all pheromone matrices to strengthen 

pheromone values along the paths from original vertex locations to their new locations in this 

best solution. This encourages better moves during the iterations that follow. The process 

repeats until stopping conditions (e.g. maximum number of iterations, maximum time, 

acceptable cost, etc.) are met. 



 

4.2 Initial results 

 

The ACO algorithm has been implemented using Java. Initial experiments have been carried 

out using OSCAR road centre line data for the St. David’s area of West Wales. The original 

test data consisted of 205 edges, made up from a total of 187 vertices. This data is pre-

generalized using the ArcGIS Simply Line tool; with point remove and topological error 

check options selected this makes use of an enhanced version of the Douglas-Peucker 

algorithm. A weed tolerance value of 50(m) is used in these experiments, resulting in 67 

edges made up from a total of 59 vertices.  The simplified data (Figure 9) acts as input to the 

ACO algorithm. The initial cost (in terms of constraints) for the input network is 640.5. 

 

 
Figure 9 – Input road network. Cost = 640.5. 

 

Figure 10 shows output produced by ACO after a total of 976,000 vertex displacements (in 

less than 2 seconds). The cost has been reduced to 99.5.  For purposes of comparison, a 

Simulated Annealing (SA) solution (based on Ware et al, 2006) has also been implemented in 

Java. The best SA solution generated to date (shown in Figure 11) has a cost of 171.1 (after 

3,450,000 vertex displacements). It was also noted that after 25,000 vertex displacements, 

ACO cost had reduced to 179.1 and SA cost had reduced to 333.0. 

 



 
 

Figure 10 – Schematic map produced by ACO. Cost = 99.5, number of vertex displacements = 

976,000. 

 

 
Figure 11 – Schematic map produced by SA. Cost = 171.1, number of vertex displacements = 3,450,000. 

 
 
5. Conclusion 

 

This paper has presented an ACO solution to the particular problems of river segmentation 

and network schematization. It has shown that ACO can be successfully applied to a 

segmented river centreline for the purpose of reducing width error. When compared to a 

Simulated Annealing solution, ACO is able to reduce width error at a faster rate (i.e. in less 

iterations). It should be noted that both algorithms achieve the same overall best result – 

which maybe suggests that the global optimum has been found. Future work will concentrate 

on testing the ACO on more realistic data sets. It is also noted that measuring segmentation 

quality on width error alone might be too simplistic an approach. The intention is also to 

apply ACO to other cartographic problems. Some work has been carried out on developing 



an ACO solution to the well known Schematic Map problem (Ware et al, 2006) and the initial 

results, reported here, indicate that ACO again outperforms Simulated Annealing (both in 

terms of quality of result and processing times). 
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Appendix 1 – ACO and Simulated Annealing Applied to Schematic Map Problem 

 

 

Original Road Network – cost (in terms of schematic map constraints – see Ware et al, 2006) 

= 640. 

 

 
 

 

  



Schematized Road Network Produced Using ACO – cost = 99, number of iterations = 

900000. 

 

 
 

 

 

  



Schematized Road Network Produced Using Simulated Annealing – cost = 171, number of 

iterations = 3500000. 

 

 
 


