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1. Introduction and related work 

In road networks, road segments that are continuous at intersections are prone to be regarded as 

naturally long lines of roads, which is called strokes (Thomson and Richardson, 1999) or 

continuity lines (Figueiredo and Amorim, 2004). Strokes make up natural functional units of a 

network, and reflect lines of flow or movement within the network (Thomson, 2006). A stroke 

arises from the aggregation of road sections, in axial maps, or line strings between junctions, in 

standard road-centre line data. The process of generalization is known in cartography (Thomson 

and Brooks, 2002) and the rules for aggregating line segments can be based in a number of 

different properties, such as street names (Jiang and Claramunt, 2004; Rosvall et al, 2005; Tomko 

et al., 2008) or the angle between two line segments (Figueiredo and Amorim, 2004; Thom, 2005; 

Thomson, 2006; Porta et al., 2006a, 2006b). However, in some high level-of-detailed road 

networks, a road section may be presented by dual lines and a road junction may be constituted 

with many road intersections. Road properties (road names, road type/function etc.) are widely 

used in road networks generalization. They can indicate the relative importance of roads in 

networks, and are quite useful in map generalization. For example, roads may be cataloged by 

different function classes. Those properties can be used conveniently to select important roads. 

However, because of incompleteness of street network databases, one can not guarantee that every 

street segment has available properties. Therefore, geometry and topology of road networks are 

important to help extract these road properties. Mackaness and Mackechnie (1999) proposed a 

hierarchy clustering method for detecting junctions in road networks. But the method sometimes 

detects fake junctions and has difficulties to remove those fake junctions. Thom (2005) proposed a 

method for detecting and collapsing dual carriageways in Ordnance Survey Integrated Transport 

NetworkTM. Each road section is attributed with a “nature of road” in the initial data, which 

indicates whether a road section is a dual carriageway. And his strategy is to mark those parallel 

dual carriageway roads are parts of the same pair However, it relies much on non-geometry 

attributes in OS ITN format and has difficulties to detect dual carriageways in other datasets with 

different formats of attributes or even have no attributes. Zhang (2009) presented an exploring 

procedure to recognize dual carriageways. It uses angular, length, maximal chord etc. to determine 

the similarity of to road lines, which is independent of any semantic information. But the method 

has difficulties to extract dual carriageways with other road lines such as with interchanges or 

ramps. 
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There are often a lot of complex road patterns existing in high level-of-detailed road networks, for 

example, dual carriageways and complex road junctions. The previous methods have difficulties 

to generate strokes from road networks with complex road patterns. For example, dual 

carriageways may be separated into two strokes, and strokes may be split or deflected at complex 

road junctions. Hence, dual carriageways and complex road junctions have to be identified to 

generate correct strokes. 

To overcome these shortcomings, this paper focuses on generating strokes from road networks 

with dual carriageways and complex road junctions. Following the introduction part, the method 

for generating strokes in road networks is proposed, which encompasses identification of dual 

carriageways and complex road junctions and generation of strokes. Before conclusions are drawn 

at the end of this paper, experiments were undertaken to evaluate the feasibilities of the proposed 

method. 

 

2. Method for generating strokes in road networks 

The proposed method encompasses the following key steps 

 detect and track dual carriageways in road networks; 

 group strokes from dual carriageways as a stroke pair;  

 generate single-line strokes in road networks; 

 detect complex road junctions based on a density-based clustering method; and 

 connect strokes across complex road junctions 

The above steps are described as follows, respectively. 

 

2.1. Dual carriageways identification 

Our method firstly identifies potential dual carriageways pair based on a buffer growing method 

and stores the results as a set. Then, it refines the initial results set according to a tracking method. 

Finally, our method groups the refined dual carriageways in a perception principle. 

2.1.1. Detecting initial dual carriageways 

The initial dual carriageways pair can be identified according to the buffer growing method 

(Walter and Fritsch, 1999). In the matching process, one of the road networks is termed as 

‘reference’ and the other is ‘target’. Firstly, the buffer of a reference road segment is generated, 

and then similarity parameters such as distance, angle and position between the reference segment 

and target segments contained in the buffer are computed. Separated segments with small distance 

and smooth angle will be regarded as matched pairs of dual carriageways. Secondly, matched 

target segments on the same side of the reference segment will be connected into one road 

polyline with no branches. Thirdly, the buffer growing algorithm will merge matched target 

polylines along the continuity of reference road segments. Fig.1 is an example of buffer growing 

for pairing dual carriageways. Suppose that target road segment t1 intersects the buffer of the 

reference segment r1, as illustrated in Fig.1-a, no dual carriageways pair is identified. But the 

buffer is growing along r1 and t1 and t2 contained in the buffer are matched polylines of r1 and r2, 

as illustrated in Fig.1-b. If there is no target segment located in the buffer of reference segment, 
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the buffer stops growing, and one initial dual carriageways pair (r2 r3 r4 and t1 t2 t3) is identified. 

The initial dual carriageways pair will be further extended by a tracking method. 

t1 t2 t3 

r 1  r 2 r3 r4 

t1 t2 

  

 

Fig.1 Buffer growing for detecting pair of dual carriageways 

 

2.1.2. Tracking dual carriageways 

A heuristic searching method was implemented to track all initial dual carriageways pairs and find 

the most possible pair as the final dual carriageways. The heuristic search method begins with one 

dual carriageways pair and connects to initial dual carriageways pair according to the principle of 

perception grouping. The tracking procedure will stop when there are no initial dual carriageways 

pairs. In order to store the tracking results, a tree data structure is created as follows. 

treeSegment < Id, parentSeg, childSeg, friendSeg, parentNode, childNode, treeType > 

The tree data structure treeSegment stores the associated ‘Id’ of a road segment, which relates to 

the geometry shape. Moreover, variables ‘parentSeg’, ‘childSeg’ and ‘friengSeg’ are used to store 

the parent, child and friend segment associated with one segment respectively when tracking dual 

roads and building tree-like routes. The ‘parentNode’ and ‘childNode’ in the data structure of 

treeSegment are used to mark the end nodes of a segment. One of them connects to parent 

segment, and the other one connects to the child. The ‘treeType’ variable indicates which tree a 

segment belonging to, and its value is ‘A’ or ‘B’, and each of them indicate one tree route of dual 

roads. 

The tracking algorithm traverses the detected initial dual carriageways pairs and starts with end 

nodes of the initial dual carriageways, and mark the end segments of the detected initial dual 

carriageways pairs as the roots of tracking trees ‘A’ and ‘B’, respectively. Then it searches leaf 

segments of one tree (A e.g.), looks for the target segments which the distance and angle are 

smaller than thresholds, and insert them into the other tree (B e.g.). There are two criterions when 

building the trees, which are 1) one child-segment have only one parent-segment in a tree, and 2) 

the segment belongs only one of the two trees. Suppose there are two or more segments have a 

common child node in a tree, the algorithm will backtrack from the conflicted point to the root of 

the tree, and preserve the shortest route from root to the conflicted point. Furthermore, suppose a 

new segment in one tree (B e.g.) connecting to the other tree (A e.g.), it is hard to determine which 

tree will be the subsequent child-segments connecting to the conflicted point belong to. Hence, 

both two cases are considered in the tracking algorithm. The two possible routes are both stored 

  

t3 

r1   r2  r3 r4 

t1 t2 t3 

r1   r2  r3 r4 

r2 → ? 

r2 r3 → t1  t2 

r2 r3 r4 →   t1  t2 t3 

Reference

Target

Reference

Target

Reference

a 

b 

c 

Target

 - 3 -



and tracked as follow-up routes, respectively. The longest tracking result at the end of the 

algorithm will be regarded as the final detected dual carriageways. There are two kinds of end of 

the algorithm, which are 1) leaves of tree A and B are intersected and there are no other branches 

to track, and 2) all leaf-segments of tree A and B are father than threshold or their angle is too 

large, so there is no matched pair to track.  

2.2. Generating strokes in road networks 

Once all the dual carriageways pairs are identified in the road network. The strokes can be 

generated based on the principle of perception grouping. Road segments that are not dual 

carriageways are connected by their angles at the intersections. If a single road segment connects 

to the end of two parts of dual carriageways, as illustrated in Fig.2, the angle between them is 

modified to the angle between the bisector of the dual carriageways and the single road segment. 

 

Fig.2 Angle between dual carriageways and single road 

 

2.3. Complex road junctions pattern recognition 

The strokes generated in previous step may discontinue across the complex junctions, as 

illustrated in Figure 3. To overcome the drawback, this paper uses a density-based clustering 

method (DBSCAN) (Ester et al., 1996) to detect junctions in road networks. And it considers the 

lengths of strokes connecting to intersections. 

 

Fig.3 strokes become discontinuous across complex junctions 

 

The proposed density-based clustering method searches for clusters by checking the 

ε-neighborhood of each intersection in the road network. The neighborhood within a radius ε of a 

given intersections is called the ε-neighborhood of the intersection. The ε-neighborhood is defined 

as network distance, rather than Euclidean. The radius of ε-neighborhood varies directly as the 

length of strokes connecting to the intersections. However, it is hard to create a function about the 

length of strokes connecting to a intersection and the radius of the intersection. This paper simply 

sets a threshold of length of strokes. The radius ε will be set to 30m if the length of strokes is 

longer than threshold, and set to 0 if shorter than threshold. If the ε-neighborhood of an 

intersection p contains more than the number of the minimal intersections, a new cluster with p as 

a core object is created. Then it iteratively collects directly density-reachable intersections from 
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these core objects, which may involve the merge of a few density-reachable clusters. The process 

terminates when no new point can be added to the cluster. Fig.4 shows the detection results of 

road junctions. The bigger sizes of symbols indicate more complicated junctions. 

 

Fig.4 Identification results of complex road junctions  

 

2.4. Grouping strokes across complex road junctions 

Once complex road junctions are identified, the strokes connect to a complex road junction should 

keep continuity according to the principle of perception grouping.This paper developed a method 

connecting the road through the junction clusters directly to keep the continuity of strokes. As 

illustrated in Fig.5-a, six strokes connecting to the same detected road junction are discontinuous. 

In order to satisfy the perceptual grouping concept, the six strokes should be connected as fluent 

as possible and have no branches. The rule for aggregating discontinuous strokes is based on the 

angle between them. As illustrated in Fig.5-b, the angle of two strokes is calculated as the mean 

value of θAB and θBA, which are angles between the strokes and the dashed line that connecting the 

two strokes. For each pairs of strokes, a mean value of angles will be calculated. And there are 

series of result of strokes grouping across a complex road junction (Fig.5-c). In these results, the 

best aggregated strokes should have the maximum value of the sum of angles in total. As 

illustrated in Fig.5-d, the three angles of paired strokes are all near 180 degree and the sum of 

them is the max value in all kinds of possible pairs. According to the rule of the maximum angle, 

the generated strokes are able to keep continuity across complex junctions. 

                  
(a) Strokes discontinuation cross junctions                (b) Angles between strokes 
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(c) A possible strok ouping result 

.5 Grouping strokes across complex junction 

 from the 

experiment that the generated strokes can satisfy the principle of perception grouping.  

 

rigeways tracking results 

     

es grouping result             (d) The final gr

Fig

3. Experimental studies 

The navigation map datasets of Wuhan city, China was selected to test the feasibilities of the 

proposed method in this paper. There are 11598 road sections in total in the Whuan datasets. Some 

roads are represented as dual carriageways and some road junctions are complicated. The 

proposed method firstly identifies dual carriageways and complex junctions. Then, it generates 

strokes by aggregating dual carriageways and strokes connecting to complex road junctions. Fig.6 

shows some detection results of dual carriageways tracking. And some experimental results of 

strokes grouping across complex road junctions are shown in Fig.7. It can be seen

Fig.6 Dual car
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Fig.7 Generating strokes according to the principle of perception grouping  

Furthermore, in order to show the continuous effect in the whole perspective, some high grade 

strokes in the dataset are chosen by the measure of betweenness centrality given by Freeman 

(Freeman, 1978), which is defined as the following formula, where njk is the number of shortest 

paths from stroke j to k, and njk(i) is the number of shortest paths from stroke j to k, which cross 

stroke i. 

 
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Betweenness centrality measure is effective to show the whole structure of the urban road network 

(Jiang and Harrie, 2004; Touya, 2007; Tomko, 2007). Fig.8 shows the results with different 

numbers of strokes selected by betweenness centrality measure. It can be seen that the strokes are 

fluent according the perceptual grouping concept. 

    
(a) 40 strokes                             (b) 80 strokes 

    

(a) 120 strokes                           (b) 160 strokes 

Fig.8 Results of strokes selection based on between centrality 

The strokes generated can be used for urban road networks analysis and integrated to a 

generalization system for the generalization of road networks. 

4. Conclusions 

This paper proposes an automated method for generating strokes from road networks. The 

proposed method is different from the previous methods. It is able to deal with the road networks 

with dual carriageways and complex junctions and to keep the continuity of strokes generated. A 

navigation map dataset was selected to test the advantageous of the proposed method. The 

experimental results show that the proposed method is capable of automated identifying dual 
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carriageways and complex junctions. Thus, it generates strokes correctly and keeps the continuity. 

The proposed method also shows a potential function for the generalization of road networks. 
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