Scalability of Contextual Generalization Processing using Partitioning and Parallelization

Marc-Olivier Briat, Jean-Luc Monnot, Edith Punt

(processing large seamless datasets)

Partitioning

Handling large volume of data

- At ArcGIS 10.0, contextual generalization tools are limited to a map sheet worth of data
 - 100,000 features
- Large seamless datasets are commonly available and need to be generalized
- Workflows to overcome those limits are complex and require additional database management steps.
 Sometimes the tools are simply not used.

Handling large volume of data

- A natural approach is to consider partitioning the dataset spatial extent. Each partition is defined as a polygon feature and isolates a subset of data to process
- Partitions should:
 - Provide control over the volume of data
 - Be available for all tools used in the workflow
 - Not have any impact on the result

Handling large volume of data

• We want partitions to be freely defined by the user

Dealing with boundaries

Two main goals

- Provide seamless processing
- Avoid post processing of boundaries

Contextual tools

- Cannot arbitrarily stop at boundary
- Need surrounding features, but up to what extent?

Contextual tools

 Can we predict what extent around a partition has an impact on processing the content of the partition?

Contextual tools

- For most of our tools, we can derive this maximum area of influence
 - Aggregation distance (aggregate polygons)
 - Merge distance (merge divided roads)
 - Minimum length (thin road network)
 - Symbol width (resolve road conflicts)
 - Etc.

Adding a buffer

- Contextual aspect addressed by buffer
 - Load all features inside the buffer
 - Modify only features inside the partition

Thin Road Network

Thin Road Network

Buffer value

- Notion of how much a feature contributes to the network using its position inside multiple itineraries
- Itineraries need to start at least from 'Minimum Length' outside the partition
- Buffer = 1.5 x Minimum Length
- Features processed by one partition are considered "locked" for adjacent partitions

Thin Road Network

- Entire streets network from California
 - 2,860,000 features
 - 157 partitions
 - 15,000 features overlapping boundaries
 - 75 visibility mismatch

Resolve Road Conflicts

Resolve Road Conflicts

Buffer

- This tool resolves symbol overlaps
- Distance is given by symbol width
- Buffer = 10 x symbol width
- Modifications extend outside the partition

Contextual tools that would not work

- Extent is not predictable
 - Distance of influence is supported by features
 - Case for the Propagate Displacement tool

Contextual tools that would not work

- Features identify a larger structure
 - Lines forming a closed polygon
 - Case for the Propagate Displacement tool

Controlling the buffer value

- Large buffer values
 - Impact the volume of data to load
 - Create additional neighbor partitions
- Worst case in our California test was +20% for the Thin Road Network tool (x10 scale jump)
- Favors a ladder approach (vs star)

Parallel Processing

Goals

- Prototype work
 - No plan to release this functionality
 - Experiment and learn
- Validate
 - This partitioning approach is suitable for parallel processing
 - No impact on workflow aspects

Make our testing framework more efficient

Database centric

Concurrent access to data (input + partitions)

- The database synchronizes the work
 - Using locks on datasets
 - Processes wait for dataset availability
- Allows multiple clients
 - On same machine
 - On remote machines

Prototype

- Prototype uses a file geodatabase
- Setup requires
 - Defining a shared folder
 - Adding an exe into ArcGIS/bin
 - Enable parallel processing with some registry keys

Transparent for the user

- User runs the geoprocessing tool as usual
 - A task file is added to the shared folder
 - Additional processes are started to work on the same task

Processing partitions

Locks to assign partitions to processes

Concurrent access to data

- Typical tool execution profile
 - In memory processing takes a lot more time than DB access
 - Makes DB locks acceptable

Concurrent access to data

Other tools have a more complex pattern

- Deal with more datasets
- Have a lower ratio of pure processing compared to processing + DB access

Concurrent access to data

- Understanding those DB access patterns is important to decide how many parallel processes could work efficiently
- Potential improvements by creating output tables instead of qualifying the input
- Increasing the size of partitions improves the ratio

Adjacent partitions

- Cannot process adjacent partitions simultaneously
 - Seamless database => Features will overlap multiple partitions
 - Some tools have to adapt to existing results (continue the work – example of RRC)
- Plan to prevent this to happen
 - Defined by the partition status

Adjacent partitions

Process partitions with a lot of unprocessed neighbors first

Adjacent partitions

Avoids neighbor conflicts when ending processing

Some Results

Entire street network for the state of California

- 2,860,000 features / 157 partitions
- 50,000 features max per partitions

ΤοοΙ	PC	With PP	Without PP	Ratio
Thin Road Network	4 core 4 processes	3h30min	13h30min	3.85
Check Network Connectivity	4 core 4 processes	6min30s	24min	3.7
Thin Road Network	4 core HT 8 processes	2h30min	10h30min	4.2
Merge Divided Roads	4 core HT 4 processes	45min	2h45min	3.7
Resolve Road Conflicts	4 core HT 8 processes	3h35min	12h30min	3.5

Future work

- Make more tools work with partitions
- Continue improving results quality
- Adapt prototype to new pieces of technology
 - Cloud computing
 - Geoprocessing services