Scalability of Contextual Generalization Processing using Partitioning and Parallelization

Marc-Olivier Briat, Jean-Luc Monnot, Edith Punt

(processing large seamless datasets)
Partitioning
Handling large volume of data

- At ArcGIS 10.0, contextual generalization tools are limited to a map sheet worth of data
 - 100,000 features
- Large seamless datasets are commonly available and need to be generalized
- Workflows to overcome those limits are complex and require additional database management steps. Sometimes the tools are simply not used.
Handling large volume of data

- A natural approach is to consider partitioning the dataset spatial extent. Each partition is defined as a polygon feature and isolates a subset of data to process.

- Partitions should:
 - Provide control over the volume of data
 - Be available for all tools used in the workflow
 - Not have any impact on the result
Handling large volume of data

- We want partitions to be freely defined by the user
Dealing with boundaries

- **Two main goals**
 - Provide seamless processing
 - Avoid post processing of boundaries

- **Contextual tools**
 - Cannot arbitrarily stop at boundary
 - Need surrounding features, but up to what extent?
Contextual tools

- Can we predict what extent around a partition has an impact on processing the content of the partition?
Contextual tools

- For most of our tools, we can derive this maximum area of influence
 - Aggregation distance (aggregate polygons)
 - Merge distance (merge divided roads)
 - Minimum length (thin road network)
 - Symbol width (resolve road conflicts)
 - Etc.
Adding a buffer

- Contextual aspect addressed by buffer
- Load all features inside the buffer
- Modify only features inside the partition
Thin Road Network
Thin Road Network

- Buffer value
 - Notion of how much a feature contributes to the network using its position inside multiple itineraries
 - Itineraries need to start at least from ‘Minimum Length’ outside the partition
 - Buffer = 1.5 x Minimum Length
- Features processed by one partition are considered “locked” for adjacent partitions
Thin Road Network

- Entire streets network from California
 - 2,860,000 features
 - 157 partitions
 - 15,000 features overlapping boundaries
 - 75 visibility mismatch
Resolve Road Conflicts
Resolve Road Conflicts

- **Buffer**
 - This tool resolves symbol overlaps
 - Distance is given by symbol width
 - Buffer = 10 x symbol width
 - Modifications extend outside the partition
Contextual tools that would not work

- Extent is not predictable
 - Distance of influence is supported by features
 - Case for the Propagate Displacement tool

```
DISP_X / DISP_Y
```
Contextual tools that would not work

- Features identify a larger structure
 - Lines forming a closed polygon
 - Case for the Propagate Displacement tool
Controlling the buffer value

- Large buffer values
 - Impact the volume of data to load
 - Create additional neighbor partitions

- Worst case in our California test was +20% for the Thin Road Network tool (x10 scale jump)

- Favors a ladder approach (vs star)
Parallel Processing
Goals

- Prototype work
 - No plan to release this functionality
 - Experiment and learn

- Validate
 - This partitioning approach is suitable for parallel processing
 - No impact on workflow aspects

- Make our testing framework more efficient
Database centric

- Concurrent access to data (input + partitions)
- The database synchronizes the work
 - Using locks on datasets
 - Processes wait for dataset availability
- Allows multiple clients
 - On same machine
 - On remote machines
Prototype

- Prototype uses a file geodatabase

- Setup requires
 - Defining a shared folder
 - Adding an exe into ArcGIS/bin
 - Enable parallel processing with some registry keys
Transparent for the user

- User runs the geoprocessing tool as usual
 - A task file is added to the shared folder
 - Additional processes are started to work on the same task
Processing partitions

- Locks to assign partitions to processes
Concurrent access to data

- Typical tool execution profile
 - In memory processing takes a lot more time than DB access
 - Makes DB locks acceptable
Concurrent access to data

- Other tools have a more complex pattern
 - Deal with more datasets
 - Have a lower ratio of pure processing compared to processing + DB access

Merge Divided Roads
1. Acquire partition
2. Read input (geometry + merge field)
3. Read output (for connectivity to existing)
4. Processing
5. Read all input attributes / insert in output
6. Update input to add QC values
7. Update partition
Concurrent access to data

- Understanding those DB access patterns is important to decide how many parallel processes could work efficiently
- Potential improvements by creating output tables instead of qualifying the input
- Increasing the size of partitions improves the ratio
Adjacent partitions

- Cannot process adjacent partitions simultaneously
 - Seamless database => Features will overlap multiple partitions
 - Some tools have to adapt to existing results (continue the work – example of RRC)

- Plan to prevent this to happen
 - Defined by the partition status

<table>
<thead>
<tr>
<th>partition processing - roads</th>
</tr>
</thead>
<tbody>
<tr>
<td><all other values></td>
</tr>
<tr>
<td>STATUS</td>
</tr>
<tr>
<td>Not Processed</td>
</tr>
<tr>
<td>Being Processed</td>
</tr>
<tr>
<td>Successfully Processed</td>
</tr>
<tr>
<td>Out of Memory; Error</td>
</tr>
</tbody>
</table>
Adjacent partitions

- Process partitions with a lot of unprocessed neighbors first
Adjacent partitions

- Avoids neighbor conflicts when ending processing
Some Results

- Entire street network for the state of California
 - 2,860,000 features / 157 partitions
 - 50,000 features max per partitions

<table>
<thead>
<tr>
<th>Tool</th>
<th>PC</th>
<th>With PP</th>
<th>Without PP</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Road Network</td>
<td>4 core 4 processes</td>
<td>3h30min</td>
<td>13h30min</td>
<td>3.85</td>
</tr>
<tr>
<td>Check Network Connectivity</td>
<td>4 core 4 processes</td>
<td>6min30s</td>
<td>24min</td>
<td>3.7</td>
</tr>
<tr>
<td>Thin Road Network</td>
<td>4 core HT 8 processes</td>
<td>2h30min</td>
<td>10h30min</td>
<td>4.2</td>
</tr>
<tr>
<td>Merge Divided Roads</td>
<td>4 core HT 4 processes</td>
<td>45min</td>
<td>2h45min</td>
<td>3.7</td>
</tr>
<tr>
<td>Resolve Road Conflicts</td>
<td>4 core HT 8 processes</td>
<td>3h35min</td>
<td>12h30min</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Future work

- Make more tools work with partitions
- Continue improving results quality
- Adapt prototype to new pieces of technology
 - Cloud computing
 - Geoprocessing services