A Methodology on Natural Occurring Lines Segmentation and Generalisation

Vassilios Mitropoulos & Byron Nakos

School of Rural & Surveying Engineering
National Technical University of Athens

mitrovas@hotmail.com - bnakos@central.ntua.gr

14th ICA/ISPRS Workshop on Generalisation and Multiple Representation, 2011, Paris, France
the aim of the project

description of methodology

segmentation

line generalisation tools

examples

future outlook
aim:

to develop a model that generalise natural occurring lines (lines that represent physical features, like rivers, coastlines, etc)

concept:

based on the “philosophy“:

 segmentation - analysis - generalisation

condition:

to preserve the legibility of the outcome
Remark:

Parts of the cartographic line that are more complex in shape (ε-non-convex) have:

- significant legibility problems in the target scale under generalisation
\[\varepsilon = W + D + T \]

\(\varepsilon \): is associated with line width and visual discrimination limit at target scale

- **W**: Line width
- **D**: Visual discrimination limit
- **T**: Tolerance
Type A:
Left or right sided ε-non-convex parts

Type B:
Both sided ε-non-convex parts

Type C:
Line coalescence between separated parts

Type D:
ε-convex parts
Type A
Left or right sided ε-non-convex parts
Type B
Both sided ε-non-convex parts
Type C
Line coalescence between separated parts
Type D
\(\varepsilon\)-convex parts
segmentation

Implementation environment:

ArcGIS (© ESRI)

Model Builder
segmentation model (overall view)
segmentation model (part 1)
segmentation model (part 2)
segmentation model (part 3)
segmentation model (part 4)
generalisation tools

Gauss filtering (smoothing algorithm)
Fritsch 1997

Balloon (exaggeration algorithm)
Lecordix et al. 1997

Bend Analysis (detection of inflection points & peeks)
Wang & Müller 1998

Affine transformation (geometric transformation)

Depress (displacement algorithm)

Implementation environment: MATLAB (© MathWorks)
Type A

\[\sigma = 9 \]
\(\sigma = 40 \)

Type B
Type C
Type D
examples

Peristera Island

generalisation scenarios:

1:100K
1:250K
1:500K
1:1M

from scale 1:50K to
example of segmentation

1:100K

One-Sided ϵ-non-convex parts
ϵ-convex parts
example of segmentation

1:250K

One-Sided ϵ-non-convex parts
Two-Sided ϵ-non-convex parts
ϵ-convex parts
example of segmentation

1:500K

One-Sided ε-non-convex parts
Two-Sided ε-non-convex parts
ε-convex parts
example of segmentation

1:1M

One-Sided ε-non-convex parts
Two-Sided ε-non-convex parts
Parts of Convergence
ε-convex parts
generalisation example (1:50K to 1:100K)
generalisation example (1:50K to 1:100K)

analogue map

proposed
generalisation example (1:50K to 1:250K)
generalisation example (1:50K to 1:250K)

analogue map

proposed
generalisation example (1:50K to 1:500K)
generalisation example (1:50K to 1:500K)

analogue map

proposed
generalisation example (1:50K to 1:1M)

initial line

proposed
generalisation example (1:50K to 1:1M)

analogue map

proposed
future outlook

Depress algorithm with more than two interacting parts

incorporate generalisation tools (**MATLAB**) into Model Builder (with Python)
Thank you