Identifying map regions that are difficult to read

Perola Olsson Karsten Pippig Lars Harrie Hanna Stigmar

GIS Centre, Lund University, Sweden

Institute of Cartography, Technische Universität Dresden, Germany

What regions in a map is difficult to read? Can we identify those regions by analytical methods?

Geoportals - data from several sources

Disposition

- * Method 1: Threshold method
- * Method 2: Clustering method
- * Evaluation of the methods
- * Integration in a geoportal enviornment

Method 1: Threshold method

User studies of map legibility

Web based user tests - a couple of hundred participants

Analytical descriptions of map legibility

Four measure types:

- Amount of information
- Spatial distribution
- Object complexity
- Graphical resolution

	Amount of information	Spatial distribution	Object complexity	Graphical resolution
Minor objects	 Number of objects Number of vertices Object line length Object area 	 Spatial distribution of objects Spatial distribution of vertices Number of neighbours Local density Semantic homogeneity 	 Object size Line segment length Angularity Polygon shape 	•Brightness difference •Hue difference
Line networks	 Number of objects Number of vertices Object line length Object area 		 Line segment length Line connectivity Angularity 	•Brightness difference •Hue difference
Tessellatio n objects	Number of objectsNumber of verticesObject line length	•Number of neighbours	 Object size Line segment length Angularity Polygon shape 	•Brightness difference •Hue difference
Field- based data	 Number of objects Number of points in the objects Object line length 		•Line segment length •Angularity	
All objects	 Number of object types Number of objects Number of vertices Object line length Object area 	Proximity indicatorDegree of overlap		

Correlation between analytical description and user tests

	Two legibility classes
Manual interpretation of threshold values	85%
Multiple linear regression	81%
Support vector machine	83%
Artificial neural network	71%

Methodology of the threshold method

Raster based method. Each cell that do not obey one of the limits below is regarded as difficult to read:

Number of objects (<11/cm²) Object line length (<17cm) Number of vertices (<450/cm²) Number of object types (<17) Degree of overlap for disjoint objects (<3) Angularity (<40/cm)

(with all data types except roads, land cover and contour lines)

Method 2: Clustering method

Identifying areas with poor legibility - I

- no additional map points for point feaures

Max distance between map points	50 m
Ratio line length/no. of vertexes	50 m
Tolerance (Douglas Peucker)	9 m
eps (DBSCAN)	75 m
minPts (DBSCAN)	10
Min area (convex hull of cluster)	250 000 m ²

Areas of poor legibility:

Identified by users (Stigmar & Harrie, 2011). Identified by DBSCAN

Areas of poor legibility:

ldentified by users (Stigmar & Harrie, 2011).
Identified by DBSCAN - 4 additional point per point
Identified by DBSCAN - 8 additional point per point

Identifying areas with poor legibility - II

- additional map points for point features (4 and 8)

Max distance between map points	50 m
Ratio line length/no. of vertexes	50 m
Tolerance (Douglas Peucker)	10 m
eps (DBSCAN)	75 m
minPts (DBSCAN)	15
Min area (convex hull of cluster)	250 000 m ²

Areas of poor legibility:

Identified by users (Stigmar & Harrie, 2011). Identified by DBSCAN - Area > 250 000 km2 Identified by DBSCAN - Area > 100 000 km2

Identifying areas with poor legibility - III

- 8 additional map points for point features and reduced min area

Max distance between map points	50 m
Ratio line length/no. of vertexes	50 m
Tolerance (Douglas Peucker)	10 m
eps (DBSCAN)	75 m
minPts (DBSCAN)	15
Min area (convex hull of cluster)	100 000 m ²

Evaluation

Red: User study

Light green: Threshold method

Blue: Clustering Method (DBSCAN)

Geoportals - view services – traditionally a cartographer designs a map

Cartographic enhanced geoportal

- a test bed for methods to improve cartography

Thanks for your attention!

Questions?