

Towards a true vario-scale structure supporting smooth-zoom

18-7-2011

Peter van Oosterom and Martijn Meijers (patent pending nr. OCNL 2006630 prepared by Dirk de Jong, European Patent Attorney, Vereenigde)

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

This is not 'yet another tGAP story'... (generalized area partitioning) Because... SSC, space-scale cube

Early use of additional dimension for scale (importance) representation

Figure 8: The 3D MBRs of the Alternative Reactive-tree

Generalized Area Partitioning-tree (GAP-tree) history

 Normal GAP-tree (van Oosterom 1993) areas are stored as independent polygons → computed redundancy (both at given scales and between scales)

 Vermeij et al. 2003 proposed topological GAP-tree: edges and faces (with importance range, consider as height), reduced redundancy between neighbors
 → scale/imp with 3D prisms

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

tGAP example

TUDelft

Delta scale \rightarrow no change at all or local shock

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Smooth tGAP

- Remove local shock
 → no horizontal faces
- Gradual changes
 → less vertical faces
- Resulting polyhedron

 → representation of single object for all its scales

Delta scale \rightarrow delta map

Non-horizontal slice \rightarrow mixed scale map

Non-flat slice \rightarrow mixed scale map (fish-eye example)

source: Harrie et al, 2002, ISPRS Archives 34(4):237-242

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Smooth simplify

- Shock change:
 - 2 rectangles
 - 1 triangle

- Smooth change:
 - 3 triangles

Smooth merge for convex neighbour

- make #nodes shared and target bnd equal (n)
- 2. connect node pairs
- 2 triangles + n-3 quadrangles
- 4. if non-flat →
 split quadrangle
 into 2 triangle
- 5. Merge planar neighbours

Non-convex neighbour → subdivide in convex parts

m-shaped neighbour

neighbour with hole

(note: smooth collapse/split similar to smooth merge)

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Selection based on (n+1)D overlap from space-scale cube

Simple initial map

Progressive initial map (sorting lower→higher detail)

(n+1)D overlap selection for zooming

Progressive zoom-in (normal sorting order)

Progressive zoom-out (reverse sorting order)

(n+1)D overlap selection for panning

Normal panning

Progressive panning (normal sorting order)

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Some future work

- Semantic aspect (incl. attributes) needs further attention
- Lower dimension primitives (lines, points) do also fit in the structure, but need further investigations
- Not per se object by object creation (but multiple objects in parallel → see paper)
- Sliver before disappearing
- Lot of implementing and testing needed

Conclusions, true vario-scale

- tGAP is well suited for web environment (progressive)
- True vario-scale nD maps based on (n+1)D representations and slicing (selecting) with hyperplanes:
 - tGAP structure translates 2D space and 1D scale in an integrated 3D topological representation: no overlaps and no gaps (in space and scale)
 - Starting with 3D space and adding scale results in 4D
 - Starting with 3D space and time (history) and adding scale results in 5D topological structure (again no gaps/overlaps in space, time or scale), well defined neighbors in space, time and scale directions

3D smooth merge (more details in patent claim)

Generic 3D smooth merge

Simplify boundary of merged object, two options:

Pseudo 4D-view

Zone zi shown for reference purpose

TUDelft