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Abstract 
Point features on topographic maps should be generalized through scale with respect to 
contextual, thematic information attributed to them. Also, because point features are typically 
presented with labels, their generalization should account for the area on the target map required 
to render the text. This paper presents an example automated workflow for the progressive 
thinning by selection of mountain summits. The workflow enriches the point features with a 
geomorphologic measure (prominence) and generalizes using this relative quantity as a ranking. 
The procedure uses scale-dependent rectangular tessellations to limit point density on the scaled 
target map such that each retained summit point has ample surrounding space within which to be 
labeled. The method is applicable to any thematic point map features which require uncluttered 
labels. 
 
1. Introduction & Background 
The computational geometry of point generalization is different from many other kinds of map 
features because a point has no dimensionality except that of its symbol. Consequently, point 
generalization is often performed in response to graphic collision or coalescence problems, or 
else to aggregate, typify or select/eliminate points in order to reduce the complexity and count of 
a distribution of points across the map. There is a need to meaningfully generalize thematic point 
data in many contexts, particularly because un-generalized data typically lead to 
incomprehensible maps suffering from the “push-pin problem”, where the symbols of many 
point features clutter a map and obscure both themselves and their base maps; to go further and 
label such a map is futile. 
 
This research considers point generalization as the underpinning problem in map labeling in the 
United States Geological Survey (USGS) context. Many of the label data used across various 
feature types in USGS topographic maps are georeferenced by point vector data. Also, the USGS 
uses the Esri Maplex engine to automate run-time labeling decisions, including those of selection 
and placement. This research sets out to simplify the computational complexity of the labeling 
tasks Maplex is asked to perform across features and scales, by pre-selecting scale-based subsets 
of points and labels based on a pre-computed importance metric not already present in the data. 
This process simplification is expected to both improve the cartographic quality of label 
selection and placement decisions made by Maplex at run time, due to the reduction of less-
significant points in competition for local label selection, and, by extension, speed up processing. 
Specifically, we present work on the scale-dependent pre-selection of summit points based on 
their computed prominences. 
 



2. Point and Label Generalization 
 
2.1 Point Generalization 
As with any cartographic feature, point generalization frequently requires processes which 
transform both the spatial and attribute data, as well as the graphical representation of the map 
features, with the two stages referred to respectively as model and cartographic generalization. 
Edwardes, Burghardt and Weibel (2005) treat point generalization comprehensively, identifying 
the five generalization operators most meaningful to point data as i) selection, ii) aggregation, iii) 
simplification, iv) typification, and v) displacement. Operators ii) and iii) are understood to be 
processes of model generalization, operators iv) and v) are processes of cartographic 
generalization, and i), selection, is understood to be a process of either model or cartographic 
generalization, depending on whether it happens on a global or local level, respectively. They 
further address point generalization in an important use scenario, namely mobile mapping, where 
users typically access query-response thematic content on devices with small screens, 
exacerbating the “push-pin problem”. This use scenario is addressed by Bereuter and Weibel 
(2013), who also take into account the particular need for real-time generalization of thematic 
point data for dynamic query delivery to mobile users. Bereuter and Weibel (2010) also address 
the possibility of altering map space rather than point locations. 
 
Computer scientists de Berg et al. (2004) consider the case of generalizing point maps in which 
global point distribution and local point density are important qualities for retention (e.g., dot 
density maps). Generalized points are regarded as a subset of the initial points, and their paper 
describes algorithms for approximating the initial distributions and densities using various 
heuristics. Subsets of points are also implied by “The Radical Law” (Töpfer & Pillewizer, 1966), 
whereby a reduced quantity of points is calculated given the initial count and the change in map 
scale. Other authors have suggested other means of determining appropriate generalized point 
distributions, including “map capacity” with respect to the number of features a map can support 
(Ratajski, 1967), as well as methods based on information theory entropy and capacity limits 
thereof (Bjorke, 2012). 
 
2.2 Label Generalization 
Several authors from cartography and other graphics fields have considered the sets of problems 
associated with map labeling, which typically surround the two tasks of label selection and label 
placement. Skupin (2000) notes that labels form a crucial consideration for map generalization, 
both because labels inhabit large areas of the product map, increasing its graphic complexity, and 
because their placement is a complex problem for automated systems (also: Shieber, Christensen, 
& Marks, 1995). Doddi et al. (1997) describe the label placement problem as consisting of 
finding a set of rectangles on the map wherein labels can be placed without graphic conflict. Of 
course, label placement is complicated further by every other graphic element on the map. 
Cecconi and Galanda (2002) describe a system of their design whereby labels are selected on-
the-fly, according to a pre-determined importance attribute. 
 
3. Summit Data and Enrichment for Generalization 
The United States Geological Society (USGS) maintains the Geographic Names Information 
System (GNIS), which itself retains a database of some 2.2 million place names and toponyms 
across the United States, each attributed to a coordinate location. GNIS points are used in USGS 



topographic map production as the point data source for numerous map feature types, natural and 
human. GNIS points are assigned an elevation value, but there is no other topographic 
information to describe natural features such as summits. 
 
In order to generalize summits more meaningfully, we computed the relative relief (i.e., 
prominence) of each summit point using the method described by Chaudhry and Mackaness 
(2008; later adopted also by Sinha & Mark, 2010). A 10-meter digital elevation model (DEM) is 
used to create contour polygons at 15m intervals throughout the area of interest, as well as to 
sample the elevation of each plotted GNIS summit point. Prominence is defined as the difference 
between the summit elevation and the elevation of its lowest encircling (i.e., intersecting) 
contour polygon which does not also encircle a higher summit. (In order to detect and define 
summits, Chaudhry and Mackaness continue to derive further morphometric properties for 
topographic eminences, including partonomic range relationships, but we use only part of their 
methods because our summit points are already defined.) 
 
4. Selection/Elimination by Scale-Referenced Tessellation 
We present an example topographic automated workflow in which summits are enriched with a 
geomorphometric measure to facilitate their generalization by local selection. The work is thus 
an example of cartographic generalization, rather than model generalization, since the summit 
data themselves are not transformed.  
 
The basic idea is to tessellate the map surface at any given map scale with rectangles, each of 
which defines the “neighborhood” within which one summit is permitted to be plotted and 
labeled. Rectangles are used over other possible tessellation shapes (e.g., hexagons) because 
label areas tend to be delimited by rectangles, given horizontal typing (Figure 1). By definition a 
tessellation possesses non-overlapping tesserae, ensuring that no piece of the map space is over-
assigned as the neighborhood of more than one label. The approach is similar to that taken by 
Bereuter and Weibel (2013), who tessellate by quadtree, except that tesserae in this approach are 
defined by target scales and label “neighborhood” sizes, are not geometrically hierarchical, and 
are computed expediently, rather than forming a data storage structure. 
 

 
 

Figure 1. Rectangles as a better approximation of label space than hexagons. 
 
The rectangles are sized such that they are always 2 cm wide, and 1.236 cm tall at target map 
scale; these two numbers are (approximately) in the ratio φ (phi, approximately 1.618). This ratio 
was chosen because of its classical proportions, being taken here as a heuristic for the areal ratio 
a label of up to three lines long may take (Figure 2). A more data-driven approach is possible, if 
one were to analyze all labels under consideration, and take a mean or maximum width vs. height 
measure as the rectangle size. 
 



 
 

Figure 2. Mountain names from our study areas in rectangles of ratio φ, with and without 
abbreviations. 

 
Because the topographic mapmaking workflow of the USGS is entirely conducted with Esri’s 
ArcGIS software, we have implemented our enrichment and generalization procedures within the 
same software, using the Python language to automate all steps. 
 
Once the map space has been tessellated and the summit of most prominence calculated in each 
rectangle, the set of selected summits is flagged in the summits attribute table for visibility at the 
given map scale. This procedure allows a single summit feature class to be maintained, with a 
scale-dependent query-able attribute defining which summits are visible; this data structure 
complies with the standard mapmaking procedures currently in place at the USGS. The 
procedure progresses by a “ladder”, rather than “star”, approach (Stoter, 2005). Laddering 
ensures that as a user moves to progressively smaller map scales, the summits selected for 
viewing are always a subset of the summits selected at the previous viewing scale (i.e., summits 
never “blink” in or out across scales). This is particularly important to our approach since the 
scaling of rectangles according to map scale means that the resulting tessellations across scales 
are very unlikely to be hierarchical (i.e., “nested”). A star approach would likely mean that a 
given summit would have different intra-rectangle local neighbors across processed rectangle 
sizes among which to compare prominence; the result would be a discontinuous 
selection/omission sequence for that summit through the scale range processed. 
 
The final step of label placement is automated in ArcGIS using the Maplex labeling engine, 
again a standard part of USGS mapmaking. The Maplex engine accounts for various graphic 
conflicts between labels and other features on the map. On a real topographic map, the engine 
would balance labeling requirements against roads, symbols, etc. A principle goal of the 
generalization described here is to generate subsets of labels for given map scales which reduce 
the spatial and graphic (i.e., computational) complexity with which the Maplex engine must deal 
at production time. 
 
5. Example - West Virginia Appalachians 
We demonstrate the workflow with an example set in National Hydrologic Dataset (NHD) 
hydrologic subbasin 02070001 in West Virginia, within the Appalachian Mountain range. This 
study area includes 174 summit locations and exemplifies the problem of over-crowding point 
symbols, each requiring a label. The problem of course becomes worse at smaller scales. Since it 
is impossible to label all summits at small scales, and because positional accuracy of summit 
location should not be compromised by displacement, the appropriate generalization operator is 
selection/elimination. 
 
We selected subset summits for 1:24,000, as well as all scales from 1:50,000 to 1:1,000,000, 
laddering up by increments of 50,000. Computation of each summit’s prominence was 
automated in ArcMap using minimal attribute table cursors and multiple Python tuple lists and 
dictionaries, and took about 5 minutes to run for all summits. The 21 ladder “rungs” computed 



for scales from 1:24,000 to 1:1,000,000 took about 20 minutes in total to compute, again 
automated using minimal ArcGIS table cursors and multiple Python data structures. All 
computations were run on a desktop workstation (3.00GHz, 2-core processor, 4GB RAM). 
Samples of the workflow output are illustrated in Figures 3 and 4. Figure 3 provides descriptive 
statistics across the summits, as well as ranges of prominence values identifying selected 
summits for five scales. Figure 4 illustrates cartographic samples of the output. 
 

 
Figure 3. Descriptive statistics for the 174 summits in the study area. A histogram 
illustrates the distribution of prominence values among the summits. The horizontal bars 
above illustrate the ranges of prominence values among summits selected at five map 
scales, with numbers at left indicating the least prominence selected, up to the highest 
prominence selected (1332.1m). Summits are also plotted by elevation vs. prominence; 
analysis of distributions such as this one across various terrain types throughout the 
country may help to identify a rule associating appropriate prominence value thresholds 
to map scales. 

 
6. Discussion and Conclusions 
We feel the workflow described above effectively resolves the elemental problem of labeled 
summit point generalization for USGS topographic maps. The approach pairing thematic 
attribute data enrichment with tessellated local selection can be applied to other point and label 
geographic features. We note that this approach is only appropriate for map features that can be 
treated by selection/elimination operations driven by the hard constraint of available map space 
for feature labeling. While the label-driven selection process described here does not retain a 
sense of relative point density or spatial distribution among labeled points, these may still be 
retained as desired by also including unlabeled points. The fact that the tessellations we employ 
are driven not by the geometric distribution of the points, but by “neighborhoods” of map space 
required to place labels allows the method to address an important print/render-time problem in 
practical cartography. 
 
Further research may identify minimum summit prominence values that are deemed appropriate 
at given map scales over the terrain types of the United States. For instance, a lower prominence 
value may not be relevant at a smaller scale for a mountain foothill area. This effort may also 
help control point density patterns for better contextual representation of terrain variations 
through summit point labeling. 
  



 
Figure 4. Workflow output for selected scales, depicted with and without the rectangles 
driving point and label selections. Grey outlines in the middle map tiles illustrate the 
extent of the above, larger scale tile. Map tiles are rendered with a hypsometric tint and 
terrain shading for context. 

 
Finally, a longer term goal is to build a knowledge base of multiscale cartographic 
representations, such as summit prominence estimates associated to terrain feature extents, that 
can be used in ontology design patterns to enable the automated identification, extraction, and 



visualization of complex topographic features through a semantic interface. This work will 
follow cognition-based extraction concepts demonstrated by Sinha and Mark (2010) with 
possible implementation through ontology design patterns presented by Varanka and Jerris 
(2010). 
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