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1. Introduction 

Digital maps such as Google Maps or Open Street Map have become one of the most 

important sources of geographic information. When users interactively browse through 

such maps on computers or small displays, they often need to zoom in and out to get 

the information desired. Often, zooming is supported by a multiple representation 

database (MRDB). This stores a discrete set of levels of detail (LOD) from which a 

user can query the LOD for a particular scale (Hampe et al 2004). A small set of LODs 

leads, however, to large and sudden changes during zooming. Since this distracts users, 

hierarchical schemes have been proposed that implement the generalization process 

based on small incremental changes, for example, the BLG-tree (van Oosterom 2005) 

for line simplification or the GAP-tree (van Oosterom 1995) for area aggregation. The 

incremental generalization process is represented in a data structure that allows a user 

to retrieve a map of any desired scale. Still, the generalization process consists of 

discrete steps and includes abrupt changes. To achieve a continuous generalization, 

Sester and Brenner (2004) suggested to simplify building footprints based on small 

incremental steps and to animate each step smoothly. Also aiming at a continuous 

generalization, several authors have developed methods for morphing between two 

polylines (Cecconi 2003, Nöllenburg et al. 2008). Most of these methods consist of 

two steps (Cecconi 2003, Nöllenburg et al. 2008, Peng et al. 2012). The first step 

usually identifies the corresponding vertices of the two polylines. The second step 

defines a trajectory for each pair of corresponding vertices. Most often, straight-line 

trajectories are defined on which, when morphing, the vertices move at constant speed. 

In this paper we address morphing, but we relax the requirement that the vertices of 

the polyline move on straight lines. Our concern with straight-line trajectories is that 

characteristic properties of the polylines change drastically during the morphing 

process. In particular, we suggest that the angles and edge lengths of the polyline 

should change linearly during the morphing process. As Figures 1(a) and 1(b) show, 

this is clearly not accomplished with straight-line trajectories. In contrast, the new 

method that we present in this paper yields a close-to-linear relationship, for example, 

between time and edge lengths; see Figures 1(c) and 1(d).  

The paper is organized as follows. We review related work in Section 2. The details 

of our method are presented in Section 3, which include a list of soft and hard 

constraints, estimates for the unknown parameters, and the iterative process of our 

model. We present a case study in Section 4, which shows that our method generally 

performs well but also reveals new problems. We conclude the paper in Section 5. 

2. Related Work 

Different methods of morphing have been developed for maps. In map generalization, 

there are many constraints that need to be satisfied (Weibel and Dutton 1998, Harrie 
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1999). These constraints should also be satisfied by intermediate-scale features 

displayed when morphing. According to van Kreveld (2001), the amount of 

displacement between the corresponding vertices of two maps of different scales is 

quite small and, when using straight-line trajectories for morphing, hardly any features 

will be in conflict with the interpolated features. We, however, argue that even in 

simple situations such as the one in Figures 1(a) and 1(b) straight-line trajectories fail 

to generate satisfactory intermediate-scale features. In fact, there are methods that use 

curves rather than straight lines as vertex trajectories, for example, circular arcs or 

parabolas (Whited and Rossignac 2009). In contrast to these methods, our method does 

not require the trajectories to be of any particular curve type. Instead, we define the 

morphing process based on constraints that we impose on the features at intermediate 

scales. 

 

Intermediate features are expected to be similar to the source feature and the target 

feature. We consider the angles and edge lengths to be very important attributes of a 

feature, not least because similarity measures are often defined based on the angles and 

edge lengths (e.g. Arkin et al. 1991, Latecki and Lakämper 2000, Frank and Ester 

2006). Sederberg et al. (1993) proposed to morph two polygons by changing the angles 

and edge lengths linearly over time. The authors also showed how to tweak the edge 

lengths and/or the angles to guarantee that at any time the intermediate polygon is 

closed. We choose an approach similar to Sederberg et al., that is, we also try to 

achieve that the angles and edge lengths change linearly. Unlike Sederberg et al., 

however, we simultaneously handle multiple constraints by defining (and solving) the 

model of a least-squares adjustment. A completely different approach was taken by 

Connelly et al. (2003). They proved that any polygonal line can be straightened, that is, 

  

(a) (b) 

  

(c) (d) 

Figure 1. Morphing between a source and a target polyline. When morphing based on 

straight-line trajectories (a), edge    receives almost zero length at time        and 

then grows again (b). With our method (c) edge lengths change almost linearly (d). 
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its vertices can be moved to a straight line such that edge lengths never change and 

edges never intersect. Streinu (2000) showed that a quadratic number of moves 

suffices and how to compute those. Note, however, that, in order to morph a polygonal 

line   into another polygonal line   (with the same edge lengths), these procedures 

would morph   into a straight line and then into  , thereby changing angles arbitrarily. 

Least-squares adjustment has been shown to be effective in handling multiple 

constraints in map generalization methods (Sester 2000, Harrie and Sarjakoski 2002). 

Basically, it relies on a function         that defines the relationship between a 

vector  ̂ of   unknowns and a vector   of   observations. Given the function   and 

the vector  , it is reasonable to ask for a vector  ̂ strictly satisfying    ( ̂)  Such a 

vector, however, normally does not exist since   is usually larger than  . Therefore, 

the vector of corrections   is introduced. Then, it is aimed to find  ̂ and   such that  

 

      ( ̂), (1) 

 

and      is minimal, where   is a matrix that allows different weights to be set to 

different observations. 

Least-squares adjustment is particularly easy to solve if a linear relationship 

between the unknowns and the observations exists, that is, if  ( ̂)    ̂   , where 

  is a constant matrix and   is a constant vector. An optimum solution is given with 

 

  ̂                 , (2) 

 

where    can be any vector of dimension   and           . 
If there is no linear relationship between the unknowns and the observations,    has 

to be chosen close to the optimum solution and the matrix   is defined based on the 

partial derivatives of   at point   . Usually, Equation 2 then yields an approximation 

of the optimum unknown vector that is better than   . A good estimate can be found 

by iteratively solving Equation 2. In each iteration (except the first), the vector    is 

set to the vector  ̂ found in the previous iteration. 

 Since eighty percent of all objects (points, lines, and areas) in a typical medium-

scale topographic map consist of lines (United Nations 1989, cited in Muller 1991), we 

focus on this object type and propose a morphing method for polylines. 

3. Morphing Based on Least-Squares Adjustment 

In this section, we present our new morphing method for polylines based on least-

squares adjustment. We introduce some definitions in Section 3.1. Then, multiple 

requirements are modeled as constraints. The soft constraints are presented in 

Section 3.2. We set constant values to the coordinates of some vertices to implement 

hard constraints in Section 3.3. The estimates for the unknowns are given in 

Section 3.4. Finally, we sketch the stop condition of the model in Section 3.5. 

3.1 Preliminaries 

We assume that we are given a polyline   with vertices         and a polyline   

with vertices        , where   and   represent the same geographic feature. 

Vertices    and    as well as    and    correspond to each other; see Figure 2(a). For 

every vertex of   we are given a corresponding point (not necessarily a vertex) on   

and for every vertex of   we are given a corresponding point (not necessarily a vertex) 

on  . The points corresponding to         are ordered along   and the points 
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corresponding to         are ordered along  . How to find the corresponding pairs of 

vertices is not discussed in this paper. We apply an algorithm similar to that of 

Nöllenburg et al. (2008) to solve this task, but any other method could be used as well. 

In order to ensure that both polylines have the same number   of vertices, our 

method first injects the points corresponding to         as new vertices into   

(yielding polyline   ) and the points corresponding to         as new vertices into   

(yielding polyline   ), as shown in Figure 2(b). The morphing process starts at time   

with polyline    and ends at time   with polyline   . Generally, we denote the polyline 

that is displayed at time   by     , thus         and        , and require that 

     has   vertices. We denote the  -th vertex of      by      . 

  
(a) original polylines (b) polylines after injection of vertices 

Figure 2. Illustration of corresponding vertices. 

3.2 Soft constraints 

The polyline      at time   is computed by constraining its angles and the lengths of 

its edges. That is, for each angle and edge length, we define an observation, which can 

be interpreted as an ideal value that we would like to achieve. In most cases, these 

ideal values can’t be achieved at the same time because of some necessary hard 

constraints. Therefore, we apply least-squares adjustment, which allows a polyline to 

be computed such that its actual angles and edge lengths are as close as possible to the 

observations. More precisely, the square sum of the differences between the 

observations and the actual parameters of the polyline are minimized. These angles and 

edge lengths constitute soft constraints in our method. 

In order to achieve that the polyline behaves as in our motivating example (recall 

Figures 1(c) and 1(d)), we define each observation based on a linear interpolation 

between the initial and final value of the polyline parameter corresponding to that 

observation.  

For the angles, this means that 

 

                          , (3) 

 

where   2      ,       and       are the initial angle and the final angle in the 

 -th vertex of    and   , respectively, and       is the observation of the angle in the 

 -   vertex at time  ; see Figure 3. 

Similarly, for the edge lengths, we define 

 

                          , (4) 
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where          ,       and       are the initial length and the final length of the 

 -   edge of    and   , respectively, and       is the observation of the length of the 

 -   edge at time  ; see Figure 3. 

 
Figure 3. Illustration of initials and finals. 

 

In order to apply least-squares adjustment, we have to express the relationship 

between the adjusted coordinates  ̂        ̂     and  ̂        ̂     of the vertices of 

     and the observations. The adjusted coordinates  ̂        ̂     and 

 ̂        ̂     are the unknowns for the least-squares adjustment at time  . We first 

consider angles, then edge lengths. 

Angles: An angle       can be computed by considering the difference of the two 

angles that the edges      and    form with the x-axis. Depending on the quadrants in 

which      and    lie relative to the vertex      , a multiple of   has to be added. This 

means that, for the adjusted value  ̂     of      , we require that 

 

  ̂           
 ̂        ̂    

 ̂        ̂    
       

 ̂      ̂      

 ̂      ̂      
     ,  (5) 

 

where      is a constant that only depends on  . For the least-squares adjustment, we 

have to compute the partial derivatives of  ̂     with respect to the unknowns. Note 

that these do not depend on the constant term     . Therefore, we can neglect it. 

Edge lengths: Each edge length is a Euclidean distance. Hence, for the adjusted 

edge length  ̂    , we require 

 

  ̂     √( ̂        ̂    )
2
 ( ̂        ̂    )

2
. (6) 

 

Here,  ̂  and  ̂  constitute the function    ̂  which we introduced in Equation 1. 

Since  ̂  and  ̂  are not linear, we linearize them with respect to their partial derivatives 

(Sester 2000, Harrie and Sarjakoski 2002). 

Note that without adding hard constraints to our model, there is no need for an 

adjustment, because we could perfectly satisfy every soft constraint, simply by creating 

a polyline with the desired angles and edge lengths. This will change, however, if we 

add hard constraints, for example, if we prescribe the end vertices of the polyline. 

3.3 Hard constraints 

There may be some common characteristic vertices in the polylines    and    which 

represent the same feature at different scales. These common characteristic vertices 

should keep their positions when morphing. That is, if for some   {     } it holds 
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that              we require as a hard constraint that for any       it also holds 

                 . That is to say, for the coordinates of      , we do not introduce 

unknown parameters in the least-squares adjustment. Note that our method does not 

require the existence of such common characteristic vertices, but it can handle them. 

Even if a vertex       in    does not have the exact same position as its 

corresponding vertex       in   , we may want to constrain       to lie at a prescribed 

position. In particular, by prescribing the positions of the end vertices       and       
of the polyline     , we can compute      independently of other polylines that need 

to meet      in one of its end vertices. This is useful if we need to deal with a 

geometric graph that, for example, represents a road network. We suggest prescribing 

the positions of vertices of degree higher than two (that is, road junctions), which 

allows us to treat each path between two such vertices as an independent problem 

instance. When prescribing the position of a vertex      , we apply a simple linear 

interpolation between       and      , that is, we set 

 

 (
     

     
)        (

     

     
)    (

     

     
), (7) 

 

where       and       are the  - and  -coordinates of      . Obviously, we should not 

constrain too many vertices this way, since otherwise no improvement compared to the 

existing method based on straight-line trajectories would be achieved. 

We note that additional hard constraints are needed, for example, to ensure that 

some right angles remain during morphing. This constraint, however, is currently not 

considered in our method. 

3.4 Estimates 

To define the morphing process, we compute intermediate polylines for   values of the 

time parameter  . Choosing   large enough gives a smooth animation. We define each 

step to take the same amount of time, thus in the  -th step the time parameter   is 

      ⁄ . We compute the polylines         ⁄     2      ⁄             ⁄   

in succession. Since the polyline at time       ⁄  will be similar to the polyline at 

time           ⁄ , we use the vertex coordinates of the previously computed 

polyline as estimates for the unknowns in the least-squares adjustment. 

3.5 Iterative process 

Since our model contains non-linear constraints, we need to solve it iteratively. We 

stop the iteration process as soon as the norm of vector  ̂    is smaller than a user-set 

threshold, where  ̂                . 

4. Case Study 

To get reasonable correspondence relationships for two polylines that will be morphed, 

we used a dynamic-programming algorithm similar to that of Nöllenburg et al. (2008) 

to determine the pairs of corresponding vertices. The algorithm of Nöllenburg et al. 

uses characteristic vertices (in our experiments, all the vertices are regarded as 

characteristic vertices) and segments between consecutive characteristic vertices as 

elements to match to minimize a defined cost function. To ensure the soft constraints 

of angles, we always prescribe the first two vertices and the last two vertices of the 

polylines in the least-squares adjustment. 



ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 7 

4.1 Case study on artificial data 

We tested our method on an instance by Bereg (2005); see Figure 4(a). The 

corresponding vertices determined by the dynamic-programming algorithm are shown 

in Figure 4(b).   

 

  
(a) two polylines (b) corresponding vertices 

Figure 4. A data set used in our experiments. 

 

Figure 5 shows the results of morphing   to   based on straight-line trajectories and 

least-squares adjustment. Based on straight-line trajectories, the left part of the "bend" 

shrinks step by step and a self-intersection occurs at time       . Based on least-

squares adjustment, the same part of the "bend" firstly translates to the right side and 

then morphs to the target edges. Definitely, the latter results are more reasonable. 
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Figure 5. Morphing with straight-line trajectories (left) and with our method (right).  
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Unfortunately, there are still problems with our method. First, we encountered a 

problem when we defined the corresponding vertices of the polylines in Figure 4(a) 

with a simple linear interpolation algorithm (as shown in Figure 6(a)) rather than with 

the dynamic-programming algorithm. Morphing   to   by the least-squares adjustment 

method we obtained undesirable results (for example, at time     2 ; see Figure 

6(b)). The polyline   moved down rather than up. 

Second, because there is no sophisticated technique to avoid self-intersections in 

our method, self-intersections may be introduced as shown in Figure 7.  

Third, sometimes the iterative computation doesn't converge if the polyline contains 

very short line segments. Figure 8 shows such a strange result. For the corresponding 

vertices shown in Figure 7(b), we add an extra pair of corresponding vertices (linked 

by a dashed green thicker curve; see Figure 8(a)) which is very close to one of the pairs 

of corresponding vertices, so that a pair of very short corresponding segments is 

introduced. The strange polyline generated with the extra vertices at time        is 

shown in Figure 8(b), where the green circle represents the extra vertex. By 

comparison, the polyline generated without the extra vertices is shown in Figure 8(c), 

where the green triangle represents the vertex near the extra vertex. Moreover, the 

algorithm doesn’t converge at time        with the extra vertices. 

 

 
                

(a) corresponding vertices (b) morphing   to   at time     2  

Figure 6. An example of an undesirable result based on our least-squares adjustment. 
 

  
 

(a) input polylines (b) corresponding vertices (c) output for       

Figure 7. A self-intersection generated by our least-squares adjustment. 
 

    
(a) the extra pair of 

corresponding vertices 

(b)       , with the extra 

corresponding vertices 

(c)       , without the 

extra corresponding vertices 

Figure 8. An example of a strange result based on our least-squares adjustment.  
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4.2 Case study on real data 

We tested our method on a part of the coastline of China; see Figure 9(a) and 9(d). The 

scale of the source polyline is            , the length is     2   , and the number of 

vertices is 2  ; the scale of the target polyline is             , the length is       , 

and the number of vertices is   . The morphing results at times     2  and        

are shown in Figure 9(b) and 9(c), respectively, where the prescribed vertices are 

marked by orange circles. Overall, we got nice results, but there are still some 

problems. In region   , the two segments almost intersect at time     2 ; in region 

 2, the “bend” first expands and then shrinks, which is not reasonable. There are two 

reasons for both problems. First, the change (decrease or increase) of the angles is 

faster than needed. Second, the decrease of the lengths is slower than needed. Both 

reasons tend to make a bend expand and then shrink. As a result, a better fitting model 

is needed to simulate the change of angles and edge lengths.  

    

(a) source polyline (b)     2  (c)        (d) target polyline 

Figure 9. Case study on real data.   

5. Concluding Remarks 

We have introduced a morphing method for polylines that tries to achieve that angles 

and edge lengths change linearly over time. Our approach is based on least-squares 

adjustment and allows soft and hard constraints to be handled. Our first results are 

promising. Still, there are open problems. In particular, we have to ensure that our 

method always converges to a good solution. We also aim to model more constraints, 

for example, to avoid self-intersections. Besides, a further topic is to combine 

morphing and simplification. 
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