
ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 1

Morphing Polylines Based on Least-Squares Adjustment

Dongliang Peng
1,3

, Jan-Henrik Haunert
1
, Alexander Wolff

1
, Christophe

Hurter

2

1Institute of Computer Science, University of Würzburg, Germany

http://www1.informatik.uni-wuerzburg.de/en/staff

2ENAC/University of Toulouse, France

christophe.hurter@enac.fr

3Department of Geo-Informatics, Central South University, China

1. Introduction

Digital maps such as Google Maps or Open Street Map have become one of the most

important sources of geographic information. When users interactively browse through

such maps on computers or small displays, they often need to zoom in and out to get

the information desired. Often, zooming is supported by a multiple representation

database (MRDB). This stores a discrete set of levels of detail (LOD) from which a

user can query the LOD for a particular scale (Hampe et al 2004). A small set of LODs

leads, however, to large and sudden changes during zooming. Since this distracts users,

hierarchical schemes have been proposed that implement the generalization process

based on small incremental changes, for example, the BLG-tree (van Oosterom 2005)

for line simplification or the GAP-tree (van Oosterom 1995) for area aggregation. The

incremental generalization process is represented in a data structure that allows a user

to retrieve a map of any desired scale. Still, the generalization process consists of

discrete steps and includes abrupt changes. To achieve a continuous generalization,

Sester and Brenner (2004) suggested to simplify building footprints based on small

incremental steps and to animate each step smoothly. Also aiming at a continuous

generalization, several authors have developed methods for morphing between two

polylines (Cecconi 2003, Nöllenburg et al. 2008). Most of these methods consist of

two steps (Cecconi 2003, Nöllenburg et al. 2008, Peng et al. 2012). The first step

usually identifies the corresponding vertices of the two polylines. The second step

defines a trajectory for each pair of corresponding vertices. Most often, straight-line

trajectories are defined on which, when morphing, the vertices move at constant speed.

In this paper we address morphing, but we relax the requirement that the vertices of

the polyline move on straight lines. Our concern with straight-line trajectories is that

characteristic properties of the polylines change drastically during the morphing

process. In particular, we suggest that the angles and edge lengths of the polyline

should change linearly during the morphing process. As Figures 1(a) and 1(b) show,

this is clearly not accomplished with straight-line trajectories. In contrast, the new

method that we present in this paper yields a close-to-linear relationship, for example,

between time and edge lengths; see Figures 1(c) and 1(d).

The paper is organized as follows. We review related work in Section 2. The details

of our method are presented in Section 3, which include a list of soft and hard

constraints, estimates for the unknown parameters, and the iterative process of our

model. We present a case study in Section 4, which shows that our method generally

performs well but also reveals new problems. We conclude the paper in Section 5.

2. Related Work

Different methods of morphing have been developed for maps. In map generalization,

there are many constraints that need to be satisfied (Weibel and Dutton 1998, Harrie

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 2

1999). These constraints should also be satisfied by intermediate-scale features

displayed when morphing. According to van Kreveld (2001), the amount of

displacement between the corresponding vertices of two maps of different scales is

quite small and, when using straight-line trajectories for morphing, hardly any features

will be in conflict with the interpolated features. We, however, argue that even in

simple situations such as the one in Figures 1(a) and 1(b) straight-line trajectories fail

to generate satisfactory intermediate-scale features. In fact, there are methods that use

curves rather than straight lines as vertex trajectories, for example, circular arcs or

parabolas (Whited and Rossignac 2009). In contrast to these methods, our method does

not require the trajectories to be of any particular curve type. Instead, we define the

morphing process based on constraints that we impose on the features at intermediate

scales.

Intermediate features are expected to be similar to the source feature and the target

feature. We consider the angles and edge lengths to be very important attributes of a

feature, not least because similarity measures are often defined based on the angles and

edge lengths (e.g. Arkin et al. 1991, Latecki and Lakämper 2000, Frank and Ester

2006). Sederberg et al. (1993) proposed to morph two polygons by changing the angles

and edge lengths linearly over time. The authors also showed how to tweak the edge

lengths and/or the angles to guarantee that at any time the intermediate polygon is

closed. We choose an approach similar to Sederberg et al., that is, we also try to

achieve that the angles and edge lengths change linearly. Unlike Sederberg et al.,

however, we simultaneously handle multiple constraints by defining (and solving) the

model of a least-squares adjustment. A completely different approach was taken by

Connelly et al. (2003). They proved that any polygonal line can be straightened, that is,

(a) (b)

(c) (d)

Figure 1. Morphing between a source and a target polyline. When morphing based on

straight-line trajectories (a), edge receives almost zero length at time and

then grows again (b). With our method (c) edge lengths change almost linearly (d).

0

40

80

120

160

0 0.25 0.5 0.75 1

0

40

80

120

160

0 0.25 0.5 0.75 1

𝑆𝑜𝑢𝑟𝑐𝑒
𝑒2

𝑒

𝑡

𝑇𝑎𝑟𝑔𝑒𝑡

𝑡 2

𝑡

𝑒2

𝑒
𝑆𝑜𝑢𝑟𝑐𝑒

𝑡

𝑇𝑎𝑟𝑔𝑒𝑡

𝑡 2

𝑡

 2

 2

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 3

its vertices can be moved to a straight line such that edge lengths never change and

edges never intersect. Streinu (2000) showed that a quadratic number of moves

suffices and how to compute those. Note, however, that, in order to morph a polygonal

line into another polygonal line (with the same edge lengths), these procedures

would morph into a straight line and then into , thereby changing angles arbitrarily.

Least-squares adjustment has been shown to be effective in handling multiple

constraints in map generalization methods (Sester 2000, Harrie and Sarjakoski 2002).

Basically, it relies on a function that defines the relationship between a

vector ̂ of unknowns and a vector of observations. Given the function and

the vector , it is reasonable to ask for a vector ̂ strictly satisfying (̂) Such a

vector, however, normally does not exist since is usually larger than . Therefore,

the vector of corrections is introduced. Then, it is aimed to find ̂ and such that

 (̂), (1)

and is minimal, where is a matrix that allows different weights to be set to

different observations.

Least-squares adjustment is particularly easy to solve if a linear relationship

between the unknowns and the observations exists, that is, if (̂) ̂ , where

 is a constant matrix and is a constant vector. An optimum solution is given with

 ̂ , (2)

where can be any vector of dimension and .
If there is no linear relationship between the unknowns and the observations, has

to be chosen close to the optimum solution and the matrix is defined based on the

partial derivatives of at point . Usually, Equation 2 then yields an approximation

of the optimum unknown vector that is better than . A good estimate can be found

by iteratively solving Equation 2. In each iteration (except the first), the vector is

set to the vector ̂ found in the previous iteration.

 Since eighty percent of all objects (points, lines, and areas) in a typical medium-

scale topographic map consist of lines (United Nations 1989, cited in Muller 1991), we

focus on this object type and propose a morphing method for polylines.

3. Morphing Based on Least-Squares Adjustment

In this section, we present our new morphing method for polylines based on least-

squares adjustment. We introduce some definitions in Section 3.1. Then, multiple

requirements are modeled as constraints. The soft constraints are presented in

Section 3.2. We set constant values to the coordinates of some vertices to implement

hard constraints in Section 3.3. The estimates for the unknowns are given in

Section 3.4. Finally, we sketch the stop condition of the model in Section 3.5.

3.1 Preliminaries

We assume that we are given a polyline with vertices and a polyline

with vertices , where and represent the same geographic feature.

Vertices and as well as and correspond to each other; see Figure 2(a). For

every vertex of we are given a corresponding point (not necessarily a vertex) on

and for every vertex of we are given a corresponding point (not necessarily a vertex)

on . The points corresponding to are ordered along and the points

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 4

corresponding to are ordered along . How to find the corresponding pairs of

vertices is not discussed in this paper. We apply an algorithm similar to that of

Nöllenburg et al. (2008) to solve this task, but any other method could be used as well.

In order to ensure that both polylines have the same number of vertices, our

method first injects the points corresponding to as new vertices into

(yielding polyline) and the points corresponding to as new vertices into

(yielding polyline), as shown in Figure 2(b). The morphing process starts at time

with polyline and ends at time with polyline . Generally, we denote the polyline

that is displayed at time by , thus and , and require that

 has vertices. We denote the -th vertex of by .

(a) original polylines (b) polylines after injection of vertices

Figure 2. Illustration of corresponding vertices.

3.2 Soft constraints

The polyline at time is computed by constraining its angles and the lengths of

its edges. That is, for each angle and edge length, we define an observation, which can

be interpreted as an ideal value that we would like to achieve. In most cases, these

ideal values can’t be achieved at the same time because of some necessary hard

constraints. Therefore, we apply least-squares adjustment, which allows a polyline to

be computed such that its actual angles and edge lengths are as close as possible to the

observations. More precisely, the square sum of the differences between the

observations and the actual parameters of the polyline are minimized. These angles and

edge lengths constitute soft constraints in our method.

In order to achieve that the polyline behaves as in our motivating example (recall

Figures 1(c) and 1(d)), we define each observation based on a linear interpolation

between the initial and final value of the polyline parameter corresponding to that

observation.

For the angles, this means that

 , (3)

where 2 , and are the initial angle and the final angle in the

 -th vertex of and , respectively, and is the observation of the angle in the

 - vertex at time ; see Figure 3.

Similarly, for the edge lengths, we define

 , (4)

𝑎

𝑎

𝑎2
𝑎4 𝐴

𝑏2

𝑏

𝑏 𝐵

𝑎2
′

𝑎
′

𝑎4
′ 𝑎

′
𝑎5
′

𝑏2
′

𝑏
′

𝑏4
′

𝑏
′

𝑏5
′

𝐴′

𝐵′

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 5

where , and are the initial length and the final length of the

 - edge of and , respectively, and is the observation of the length of the

 - edge at time ; see Figure 3.

Figure 3. Illustration of initials and finals.

In order to apply least-squares adjustment, we have to express the relationship

between the adjusted coordinates ̂ ̂ and ̂ ̂ of the vertices of

 and the observations. The adjusted coordinates ̂ ̂ and

 ̂ ̂ are the unknowns for the least-squares adjustment at time . We first

consider angles, then edge lengths.

Angles: An angle can be computed by considering the difference of the two

angles that the edges and form with the x-axis. Depending on the quadrants in

which and lie relative to the vertex , a multiple of has to be added. This

means that, for the adjusted value ̂ of , we require that

 ̂
 ̂ ̂

 ̂ ̂

 ̂ ̂

 ̂ ̂
 , (5)

where is a constant that only depends on . For the least-squares adjustment, we

have to compute the partial derivatives of ̂ with respect to the unknowns. Note

that these do not depend on the constant term . Therefore, we can neglect it.

Edge lengths: Each edge length is a Euclidean distance. Hence, for the adjusted

edge length ̂ , we require

 ̂ √(̂ ̂)
2
 (̂ ̂)

2
. (6)

Here, ̂ and ̂ constitute the function ̂ which we introduced in Equation 1.

Since ̂ and ̂ are not linear, we linearize them with respect to their partial derivatives

(Sester 2000, Harrie and Sarjakoski 2002).

Note that without adding hard constraints to our model, there is no need for an

adjustment, because we could perfectly satisfy every soft constraint, simply by creating

a polyline with the desired angles and edge lengths. This will change, however, if we

add hard constraints, for example, if we prescribe the end vertices of the polyline.

3.3 Hard constraints

There may be some common characteristic vertices in the polylines and which

represent the same feature at different scales. These common characteristic vertices

should keep their positions when morphing. That is, if for some { } it holds

𝑙

𝑙
𝑙2 𝑙

𝑙4

𝑙2
𝑙

𝑙4

𝛽2

𝛽 𝛽4

𝛽2 𝛽
𝛽4

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 6

that we require as a hard constraint that for any it also holds

 . That is to say, for the coordinates of , we do not introduce

unknown parameters in the least-squares adjustment. Note that our method does not

require the existence of such common characteristic vertices, but it can handle them.

Even if a vertex in does not have the exact same position as its

corresponding vertex in , we may want to constrain to lie at a prescribed

position. In particular, by prescribing the positions of the end vertices and
of the polyline , we can compute independently of other polylines that need

to meet in one of its end vertices. This is useful if we need to deal with a

geometric graph that, for example, represents a road network. We suggest prescribing

the positions of vertices of degree higher than two (that is, road junctions), which

allows us to treat each path between two such vertices as an independent problem

instance. When prescribing the position of a vertex , we apply a simple linear

interpolation between and , that is, we set

 (

) (

) (

), (7)

where and are the - and -coordinates of . Obviously, we should not

constrain too many vertices this way, since otherwise no improvement compared to the

existing method based on straight-line trajectories would be achieved.

We note that additional hard constraints are needed, for example, to ensure that

some right angles remain during morphing. This constraint, however, is currently not

considered in our method.

3.4 Estimates

To define the morphing process, we compute intermediate polylines for values of the

time parameter . Choosing large enough gives a smooth animation. We define each

step to take the same amount of time, thus in the -th step the time parameter is

 ⁄ . We compute the polylines ⁄ 2 ⁄ ⁄

in succession. Since the polyline at time ⁄ will be similar to the polyline at

time ⁄ , we use the vertex coordinates of the previously computed

polyline as estimates for the unknowns in the least-squares adjustment.

3.5 Iterative process

Since our model contains non-linear constraints, we need to solve it iteratively. We

stop the iteration process as soon as the norm of vector ̂ is smaller than a user-set

threshold, where ̂ .

4. Case Study

To get reasonable correspondence relationships for two polylines that will be morphed,

we used a dynamic-programming algorithm similar to that of Nöllenburg et al. (2008)

to determine the pairs of corresponding vertices. The algorithm of Nöllenburg et al.

uses characteristic vertices (in our experiments, all the vertices are regarded as

characteristic vertices) and segments between consecutive characteristic vertices as

elements to match to minimize a defined cost function. To ensure the soft constraints

of angles, we always prescribe the first two vertices and the last two vertices of the

polylines in the least-squares adjustment.

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 7

4.1 Case study on artificial data

We tested our method on an instance by Bereg (2005); see Figure 4(a). The

corresponding vertices determined by the dynamic-programming algorithm are shown

in Figure 4(b).

(a) two polylines (b) corresponding vertices

Figure 4. A data set used in our experiments.

Figure 5 shows the results of morphing to based on straight-line trajectories and

least-squares adjustment. Based on straight-line trajectories, the left part of the "bend"

shrinks step by step and a self-intersection occurs at time . Based on least-

squares adjustment, the same part of the "bend" firstly translates to the right side and

then morphs to the target edges. Definitely, the latter results are more reasonable.

Morphing

 to

Morphing based on

straight-line trajectories

Morphing based on

least-squares adjustment

source

polyline

 2

target

polyline

vertex

trajectories

Figure 5. Morphing with straight-line trajectories (left) and with our method (right).

𝐴

𝐵

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 8

Unfortunately, there are still problems with our method. First, we encountered a

problem when we defined the corresponding vertices of the polylines in Figure 4(a)

with a simple linear interpolation algorithm (as shown in Figure 6(a)) rather than with

the dynamic-programming algorithm. Morphing to by the least-squares adjustment

method we obtained undesirable results (for example, at time 2 ; see Figure

6(b)). The polyline moved down rather than up.

Second, because there is no sophisticated technique to avoid self-intersections in

our method, self-intersections may be introduced as shown in Figure 7.

Third, sometimes the iterative computation doesn't converge if the polyline contains

very short line segments. Figure 8 shows such a strange result. For the corresponding

vertices shown in Figure 7(b), we add an extra pair of corresponding vertices (linked

by a dashed green thicker curve; see Figure 8(a)) which is very close to one of the pairs

of corresponding vertices, so that a pair of very short corresponding segments is

introduced. The strange polyline generated with the extra vertices at time is

shown in Figure 8(b), where the green circle represents the extra vertex. By

comparison, the polyline generated without the extra vertices is shown in Figure 8(c),

where the green triangle represents the vertex near the extra vertex. Moreover, the

algorithm doesn’t converge at time with the extra vertices.

(a) corresponding vertices (b) morphing to at time 2

Figure 6. An example of an undesirable result based on our least-squares adjustment.

(a) input polylines (b) corresponding vertices (c) output for

Figure 7. A self-intersection generated by our least-squares adjustment.

(a) the extra pair of

corresponding vertices

(b) , with the extra

corresponding vertices

(c) , without the

extra corresponding vertices

Figure 8. An example of a strange result based on our least-squares adjustment.

!

#

 2

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 9

4.2 Case study on real data

We tested our method on a part of the coastline of China; see Figure 9(a) and 9(d). The

scale of the source polyline is , the length is 2 , and the number of

vertices is 2 ; the scale of the target polyline is , the length is ,

and the number of vertices is . The morphing results at times 2 and

are shown in Figure 9(b) and 9(c), respectively, where the prescribed vertices are

marked by orange circles. Overall, we got nice results, but there are still some

problems. In region , the two segments almost intersect at time 2 ; in region

 2, the “bend” first expands and then shrinks, which is not reasonable. There are two

reasons for both problems. First, the change (decrease or increase) of the angles is

faster than needed. Second, the decrease of the lengths is slower than needed. Both

reasons tend to make a bend expand and then shrink. As a result, a better fitting model

is needed to simulate the change of angles and edge lengths.

(a) source polyline (b) 2 (c) (d) target polyline

Figure 9. Case study on real data.

5. Concluding Remarks

We have introduced a morphing method for polylines that tries to achieve that angles

and edge lengths change linearly over time. Our approach is based on least-squares

adjustment and allows soft and hard constraints to be handled. Our first results are

promising. Still, there are open problems. In particular, we have to ensure that our

method always converges to a good solution. We also aim to model more constraints,

for example, to avoid self-intersections. Besides, a further topic is to combine

morphing and simplification.

Acknowledgements

This research was partly supported by the China Scholarship Council (CSC) and

Hunan Provincial Innovation Foundation for Postgraduates.

References
Arkin E M, Chew L P, Huttenlocher D P, Kedem K and Mitchell J S B, 1991, An efficiently computable

metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(3):209–216.

Bereg S, 2005, An approximate morphing between polylines. International Journal of Computational

Geometry, 15(2):193–208.

Cecconi A, 2003, Integration of cartographic generalization and multi-scale databases for enhanced web

mapping. Dissertation, University of Zurich.

Connelly R, Demaine E D and Rote G, 2003, Straightening polygonal arcs and convexifying polygonal

cycles. Discrete and Computational Geometry, 30(2):205–239.

!!!

!

!

!

! !!

!
!!

!

! ! !
!

!

!

!
!
!

!!

!!
!

!
!

!

!

!

!

!!! !

!!!
!!!

!

!

!

! ! !

!
!!

!

! ! !
!

!

!

!
!
!

!!

!!
!

!
!

!

!

!

!

!!! !

!!!

 2

ICA Workshop on Generalisation and Map Production, Dresden, Germany, 2013 10

Frank R and Ester M, 2006, A quantitative similarity measure for maps. In: Riedl A, Kainz W and

Elmes G A (eds), Progress in Spatial Data Handling – Proc. 12th International Symposium on

Spatial Data Handling, Springer-Verlag, Berlin, Germany, pages 435–450.

Hampe M, Sester M and Harrie L, 2004, Multiple representation databases to support visualisation on

mobile devices. In: Altan O (eds), Proc. 20th ISPRS Congress, volume XXXV (Part B4), series

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

Istanbul, Turkey, pages 135–140.

Harrie L, 1999, The constraint method for solving spatial conflicts in cartographic generalization.

Cartography and Geographic Information Science, 26(1):55–69.

Harrie L and Sarjakoski T, 2002, Simultaneous graphic generalization of vector data sets.

Geoinformatica, 6(3):233–261.

Latecki L J and Lakämper R, 2000, Shape similarity measure based on correspondence of visual parts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1185–1190.

Muller J-C, 1991, Generalization of spatial databases. In: Maguire D J, Goodchild M F and Rhind D W

(eds), Geographical Information Systems: Principles and Applications, Longman Scientific &

Technical, Harlow, UK, pages 457–475.

Nöllenburg M, Merrick D, Wolff A and Benkert M, 2008, Morphing polylines: A step towards

continuous generalization. Computers, Environment and Urban Systems, 32(4):248–260.

Peng D L, Deng M and Zhao B B, 2012, Multi-scale transformation of river networks based on

morphing technology. Journal of Remote Sensing, 16(5):953–968.

Sederberg T W, Gao P, Wang G and Mu H, 1993, 2-D shape blending: an intrinsic solution to the vertex

path problem. In: Proc. 20th Annual Conference on Computer Graphics and Interactive

Techniques, New York, USA, pages 15–18.

Sester M, 2000, Generalization based on least squares adjustment. In: Fritsch D and Molenaar M (eds),

Proc. 19th ISPRS Congress, volume XXXIII (Part B4), series International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, Amsterdam, The

Netherlands, pages 931–938.

Sester M and Brenner C, 2004, Continuous generalization for fast and smooth visualization on small

displays. In: Altan O (eds), Proc. 20th ISPRS Congress, volume XXXV (Part B4), series

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

Istanbul, Turkey, pages 1293–1298.

Streinu I, 2000, A combinatorial approach to planar non-colliding robot arm motion planning. In: Proc.

41st Annual Symposium on Foundations of Computer Science (FOCS'00), Redondo Beach, USA,

pages 443–453.

United Nations, 1989, Modern mapping techniques. United Nations Inter-Regional Seminar, Honefoss,

Norway.

van Kreveld M, 2001, Smooth generalization for continuous zooming. In: Proc. 20th International

Cartographic Conference, Beijing, China, pages 2180–2185.

van Oosterom P, 1995, The GAP-tree, an approach to on-the-fly map generalization of an area

partitioning. In: Muller J C, Lagrange J P and Weibel R (eds), GIS and Generalization:

Methodology and Practice, Taylor & Francis, London, UK, pages 120–132.

van Oosterom P, 2005, Variable-scale topological data structures suitable for progressive data transfer:

the GAP-face tree and GAP-edge forest. Cartography and Geographic Information Science,

32(4):331–346.

Weibel R and Dutton G, 1998, Constraint-based automated map generalization. In: Proc. 8th

International Symposium on Spatial Data Handling, Vancouver, Canada, pages 214–224.

Whited B and Rossignac J, 2009, B-morphs between b-compatible curves in the plane. In: Proc. 2009

SIAM/ACM Joint Conference on Geometric and Physical Modeling, New York, America,

pages 187–198.

