Alternate Methods for Automatic Selection of Primary Paths Through Braided Hydrographic Networks

Barbara P Buttenfield, University of Colorado Lawrence V. Stanislawski, CEGIS-USGS Christopher Anderson-Tarver, University of Colorado Michael Gleason, National Renewable Energy Lab (NREL)

Supported by USGS-CEGIS grant # 04121HS029, "Generalization and Data Modeling for New Generation Topographic Mapping"

16th ICA Workshop on Generalization and Multiple Representations Dresden Germany, 23-24 August 2013

Why delineate primary paths?

- Primary channels contain the most water useful for topographic base mapping and hydrological analysis
- Automatic methods often based on stream order.

- Automated methods difficult with High Resolution (24K) NHD (National Hydrography Dataset)
 - Stream order not explicitly coded, due to database size and irregular update cycle
 - Prioritize stream channels by Upstream Drainage Area (UDA)

Basic Delineation Algorithm – Stage 1

Basic Delineation

- 2. Trace path <u>upstream</u> from each "stem" to headwaters At each confluence, select a primary channel as follows:
 - a. If one tributary shares Reachcode of downstream flowline, select it ELSE
 - b. If one tributary shares GNIS Name of downstream flowline select it ELSE
 - c. If neither/both tributaries share Reachcode/GNIS name ... select the tributary with greater UDA value

Results of Basic Delineation – Stage 1 Lower Prairie Dog Town Fork Red River, Texas HUC8: 11120105 UDA > 20.0% ofSubbasin Area 10 20 0 40 Centerline Stems **Kilometers** Flowlines Subbasin Boundary

LIMITATION OF BASIC SOLUTION

- Including all braided channels can produce overly complex primary path
- Following basic identification, delineate one or several paths through the braid to prioritize channels or to clarify map display

Solution 1: Inner Channel Algorithm

- Isolate a set of braided channels
 - Convert flowlines to polygons
 - Dissolve; select flowlines contained in braid polygons
- Work upstream from the outflow channel of each braid polygon
- Use the same basic delineation rules at confluences trace single primary path through braid
 - 1. Reachcode ID match
 - 2. GNIS Name match
 - 3. Highest UDA

When multiple inflows contribute to a braid, isolate new braid polygon and delineate primary channel using same basic delineation rules

Solution 2: Outer Channel Algorithm

Rationale

- In some mapping situations, knowledge of braid extent as important as the primary channel
 - Useful for small scale mapping
- Use longstanding cartographic
- convention applied to rail sidings
 - Retain outermost tracks to preserve overall shape / extent

Algorithm Comparison

Solution 3: Weighted Channel Algorithm

flo	ilow_weights_braid_poly2														
	GNIS_Name	ReachCode	WBAreaC	FType	TOT_CM_SQ_KM	inr_pa	all_pat	outr_p	Braid_wt	GNIS_wt	Fcode_wt	inFcode_wt	IP_wt	OP_wt	UDA_wt
	<null></null>	11120105001474	91860479	558	3002273.48103	FLW	CTR1	CTR1	17	0	3	0	0	10	4
	<null></null>	11120105001475	91860479	558	3002299.484245	FLW	CTR1	CTR1	17	0	3	0	0	10	4
	Prairie Dog Town For	11120105001533	<null></null>	558	3002227.905993	CTR1	CTR1	CTR1	52	20	3	0	15	10	4
	<null></null>	11120105001534	<null></null>	460	3002243.379563	FLW	CTR1	FLW	10	0	0	1	0	0	4
	<null></null>	11120105001534	<null></null>	558	3002243.365024	FLW	CTR1	FLW	10	0	0	1	0	0	4
	Prairie Dog Town For	11120105001535	<null></null>	558	3002252.921182	CTR1	CTR1	FLW	42	20	3	0	15	0	4
	Prairie Dog Town For	11120105001536	<null></null>	558	3002253.17834	CTR1	CTR1	FLW	42	20	3	0	15	0	4
	Prairie Dog Town For	11120105001536	<null></null>	558	3002252.956609	CTR1	CTR1	FLW	42	20	3	0	15	0	4
	Prairie Dog Town For	11120105001537	<null></null>	558	3002254.119431	CTR1	CTR1	FLW	42	20	3	0	15	0	4
	<null></null>	11120105001539	<null></null>	460	0.376885	FLW	FLW	FLW	3	0	0	1	0	0	2
	<null></null>	11120105001539	<null></null>	460	0.370465	FLW	FLW	FLW	3	0	0	1	0	0	2
	<null></null>	11120105001539	<null></null>	460	0.405738	FLW	FLW	FLW	3	0	0	1	0	0	2
	<null></null>	11120105001540	<null></null>	558	3002244.278496	FLW	CTR1	FLW	10	0	0	1	0	0	4
	<null></null>	11120105001540	<null></null>	460	3002244.275736	FLW	CTR1	FLW	10	0	0	1	0	0	4
	Prairie Dog Town For	11120105001542	<null></null>	558	3002268.803883	CTR1	CTR1	FLW	42	20	3	0	15	0	4
	<null></null>	11120105001543	<null></null>	558	1 120726	FIW	FIW	FIW	5	0	3	0	0	0	2

Rank all flowline channels in braid polygon; display progressive subsets at intermediate scales

- ---- 10 12
- **~~~** 15 17
- **~~~** 42 54

Kilometers

(wts 1-60) All Paths

(wts 6-60) Lose terminal channels

(wts 13-60)

Lose most internal connector channels

(wts 18-60) Identical to Inner Channel solution

Summary of Weighted Channel Progress

- Modified railroad siding analogy
 - Prioritizes braid extent & primary channel(s)
 - Protects channel connectivity
 - Continuous scale progression, no flicker
 - Braid weights as surrogate for stream order
 - Delineating primary channels instead of pruning data for large scale jumps – ICC paper Thursday
- Ongoing Tasks
 - Associate weights with specific scale ranges
 - Test other weighting schemes, larger braids, larger scale ranges

Slocum et al 2009 *Thematic Cartography*: 102

