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Introduction 

Despite the raster model’s simplicity, deep conceptual ambiguities exist within it. 
Every cell covers a certain area in space, while an underlying continuous field 
phenomenon has variation throughout this area. A coded cell value can be determined 
only by using statistical techniques (e.g., mean, etc.). The same situation exists for 
classed rasters: cells may be crossed by several “classes”, and the coded value 
depends on the assignment method. Also, when the cell size (i.e., resolution), shape, 
or orientation is changed, the resulting values for a cell at a particular location also 
change. Thus, we have two ambiguities: the first is assignment ambiguity, concerned 
with the possibility of different calculation schemes for raster values, and the second 
is the Modifiable Areal Unit Problem (Openshaw 1984). Raster generalization must 
handle both problems, and involves one or both of two processes: a) recalculation of 
values for new cells, and b) transition to different, likely greater, cell sizes.  

Certain important cartographic and GIS applications ask for a full-fledged system 
of raster generalization methods. These come primarily from thematic and special-
purpose mapping and analysis (e.g., surface analysis, climatological visualization and 
analysis, etc.). For some geographic data the raster model is more natural than vector. 
Among these are DEMS, geophysical fields (e.g., temperature and currents), abstract 
statistical fields (e.g., probability surfaces), and virtually any other continuous 
phenomena. 

Our study aims to inventory past and current research in raster generalization both 
in GIScience and related fields, and to offer principles and methods as context to 
evolving raster generalization systems. 
Background 

Several conceptual frameworks for raster generalization have been proposed 
(Peuquet 1979, Li et al. 2001). McMaster and Monmonier (1989) divide raster 
generalization tasks into four categories: a) structural generalization, b) numerical 
generalization, c) numerical categorization, and d) categorical generalization. They 
identify fundamental operators and evaluate a variety of techniques used for raster-
mode generalization. Comparisons of raster- and vector-based generalization have 
also been of interest (Daley et al. 1997, Li & Openshaw 1992, Peter and Weibel 
1999). A series of articles by Li et al. on mathematical morphology in rasters should 
also be mentioned (Li 1994, Li & Su 1996, Su & Li 1995, Su et al, 1997a, 1997b, 
1998). 

Perhaps the most researched topic in raster generalization is digital elevation 
models (DEM) processing. Early studies in DEM generalization were based upon 
kernel-based filtering operations (Loon 1978). Since filtering does not take 
phenomenon structure into account, adaptive methods using structural information, 
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typically in the form of skeletal structure lines, were developed (Weibel 1987, Zaksek 
and Podobnikar 2005). Fan et al. (2007) developed a four-stage method using low-
pass, smoothing and threshold filters that are locally combined depending on the slope 
and curvature of the surface. Leonowicz et al. (2009) used low and high quartile filters 
for valleys and watersheds, and developed  a curvature-based algorithm (Leonowicz et 
al. 2010). Jordan (2007) developed a method based on Strahler stream order; basins 
are derived for streams of certain hierarchical order and these are filled by 
triangulating watershed boundaries; Ai and Li (2010) use a similar methodology. 
Other interesting fields of research are based on Fourier analysis (Clarke 1988) and 
wavelet transformations (Wu 2000). Jenny et al. (2011) applied wavelet multiscale 
pyramids to DEMs. Effects of filtering on DEM characteristics are investigated by 
Stauffer et al. (2012). Also, some case studies were conducted in raster land cover 
generalization (Monmonier 1983, Johnsson 1996, Jaakkola 1997). 

Within the field of computer vision, scale-space theory is a formalization of 
multiscale image (e.g., photograph) representation, frequently used to deal with 
feature detection operations such as facial detection. The general approach is to 
convolve images with a Gaussian kernel parameterized to scale, analogous to a GIS 
moving-window operation. “Any coarse scale representation can be computed from 
any fine-scale representation using a similar transformation as the transformation from 
the original image” (Lindeberg 2008), meaning that multiple, sequenced 
representations can be computed along a continuum of scale. We propose applying the 
principles of scale-space theory to geospatial rasters. 
 
Raster properties 
Regular spatial sampling frequency: An intrinsic property of rasters, this allows 
neighborhood-scope kernel operations to work across the whole dataset without 
anomalous biases (projection distortions remaining invariant).  
Topology & neighborhood: Every cell in a raster is clearly spatially related to its 
neighbors (4 or 8, depending on what kind of connectivity is used, see ‘connectivity 
paradox’ explained by Duff et al. 1973)—not always true for vector data. This allows 
intuitive analysis of every cell’s neighborhood, and thus calculation of various surface 
derivatives such as slope. 
Projection distortions: rasters contain all the distortions of their map projection. 
Usually raster processing does not treat these distortions, but in case of rasters 
covering large extents these distortions are inevitable. A possible solution is to 
partition the raster, reproject each partition independently to reduce distortion (e.g., 
convert to UTM), process each, and finally mosaic together. Another approach may be 
to use a variable kernel shape/size, such that the kernel varies in accordance to the 
local projection distortion to compensate for it. This latter case is developed in our 
case study. 
Constraints for raster generalization 

We suggest that the goal is to produce generalized rasters that maintain and/or 
optimize their information content through successive generalizations. This can be 
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conceived of as a matter of avoiding or minimizing error in the generalizations. This 
error can be of several types, including spatial and thematic (attribute) error (Luneta et 
al. 1991), each of which can be quantified and statistically compared. A directly 
related approach is to consider the pixel entropy of successive rasters (Bjorke 1996; 
Knöpfli 1983; Shannon 1948).  

With increasing degrees of generalization we cannot indefinitely maintain or 
optimize the entropy or error of a raster; at some scale and resolution the pixels will be 
so coarse, or the variation between pixel values so minimal, as to make this 
impossible. We hypothesize that that this point of failure, similar to Ratajski’s (1967) 
points de généralization, is deterministically different for every input raster. If this is 
true, identifying that point would be very useful, since it would describe the range of 
scales over which a certain image is analytically reliable. 

 
Some further possible constraints for raster generalization: 
1. Geometry constraints (shape, area) 

• Horizontal boundary shapes should be preserved continuously 
• Areas and value distributions should be preserved continuously 

2. Value constraints (statistics) 
• General statistics (mean, range, etc.) should be preserved continuously 

In addition to novel innovative pixel operations, generalization processes may take 
the form of sequences of established raster processes (e.g., filters, pan-sharpening, 
opening and closing [“expand” and “shrink”]). 
Strategies of generalization 

Classed rasters have inherent “shapes” coded into them, and generalization of these 
may borrow techniques from vector generalization by operating on their boundaries. 
Continuous rasters require different approaches, probably involving calculus 
techniques on surface derivatives (e.g., Tobler 1979), as well as pattern-recognition 
methods that detect structures in the surface using edge detection algorithms and 
measures of spatial autocorrelation in pixel values. 
Unexplored topics 

McMaster & Monmonier (1989) offer a framework of four classes into which 
raster generalization procedures may fall. While many elementary, pixel-level 
operators are well-documented among varying disciplines such as GIScience, 
computer graphics, and medical imaging, there remain unexplored topics relevant to 
cartographers and spatial analysts. The issue of map projection distortion, in 
particular, is important whenever the scale of a map is small enough that Earth’s 
curvature cannot be ignored. Such an issue would be encountered by an analysis 
seeking to identify large-scale phenomena (e.g., a hurricane) from small-scale 
phenoma (e.g., wind speed recorded in 1 meter pixels). In this paper we examine the 
consequences of ignoring the variable latitudinal scaling in the Mercator projection 
across a large north-south extent in raster low-pass filtering; we offer a solution using 
variable-size kernels parameterized to areal distortion. 
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Further topics to address include the information content of raster images, and the 
evaluation of generalized rasters with regard to differences in information, or, 
equivalently, error. The Modifiable Areal Unit Problem remains an important, but 
largely unresolved issue in spatial analysis and representation since the work of 
Openshaw (1984); while not limited pixels, it is centrally important in any kind of 
structural raster generalization. Procedural issues yet to be explored include the effects 
of varied sequences of operators applied to rasters, and the effects of star vs. ladder 
approaches (Stoter 2005) with respect to particular operators. 
Case study: Raster processing with variable kernel shape 

Both local and global raster processing operations are significantly affected by 
projection distortions — a fact frequently ignored. An example consequence of this is 
how slopes in polar areas are heavily flattened using a DEM in the Mercator 
projection. In contrast, raster processing is motivated not by pixel re-projection, but by 
altering the properties of the modeled field or set of objects; when a cartographer 
performs DEM smoothing, she probably wants to smooth every terrain feature to an 
equal degree, and not have features at high latitudes generalized less than those at low 
ones. 

To treat this issue we offer an approach using variable kernel shapes that are 
morphed at each pixel according to the local Tissot ellipse of distortion. In this case it 
is important that the initial kernel size should be defined not in pixels, but in raster 
projection units (meters). 

The following algorithm is applied: 
1. Define initial shape of the kernel (commonly rectangular or ellipse) and its 

sizes in both X and Y directions 
2. Calculate the extent of the raster in geographical units (degrees). 
3. Sample raster area by the control points, which are equally spaced in degrees. 

Sampling distance is defined by user or can be calculated as a function of raster 
geographical extent and resolution. 

4. Calculate the parameters of distortion ellipse at each point using projection 
equations. These parameters are m (meridian scale), n (parallel scale) and θ 
(local angle between parallel and meridian).  

5. Using distortion ellipse parameters, define the local matrix of affine 
transformation. 

6. Transform initial kernel shape and rasterize it. Round the size of the kernel to 
the odd number if needed. 

7. For each pixel in the initial raster find the closest control point and assign its 
number to the pixel. 

8. Process the whole raster using kernels from assigned control points. 
We selected a combination of mean filtering and the Mercator projection for 

preliminary testing of the approach. The Mercator projection’s linear distortions are 
calculated simly as m = n = 1/cos(B) at every point, where B is the latitude, and θ = 
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π/2. Thus the kernel need only be scaled according to value of m. Control points were 
sampled each degree by latitude. 

The source raster was a 5 km resolution DEM covering the European part of 
Russia. First, we processed the DEM using a 35×35 km (7×7 pixels) square kernel in a 
traditional, non-variable-kernel approach. Then we applied our variable kernel 
approach, with size varying from 7×7 pixels at 30° to 67×67 at 84°, always covering 
approximately the same 35×35 km area. Results of filtering show that our approach 
produces more geographically sound results than simple filtering. Compare the Kola 
peninsula in the northern part of the map and the Caucasus in the southern part (Figure 
1). Enlarged terrain features at high latitudes appear to be generalized much less then 
southern territories by simple filtering. In contrast, application of a variable kernel 
shape smoothes features of the same geographical area, which can be important if the 
smoothing is performed for geographical analysis applications. 

 
Figure 1 – Mercator projection. 

The difference becomes more evident when resulting and initial rasters are re-
projected into Albers Equal Area projection (50° central meridian, Figure 2). In this 
case it can be seen that non-variable generalization is inconsistent throughout the area, 
having very detailed polar regions and smoothed subtropics. And in the case of the 
variable kernel shape, the generalization is the same over the whole area (particularly 
from south to north), showing that this map introduces little projection distortions. 
Figure 3 illustrates the same behavior using contour lines; a greater spatial frequency 
and complexity of contour lines derived from the non-variable-kernel smoothing 
indicates that it has failed to generalize northern latitudes to the same degree as more 
southerly ones in terms of generalizing the features similar in size. 
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Figure 2 – Equal Area Conic projection. 

 
Figure 3 – 30m contours derived from non-variable-kernel DEM smoothing (grey) 
and variable-kernel DEM smoothing (white) at the Kola Peninsula in Russia’s far 
north. 

Distortions should also be taken into account for calculation of global raster 
statistics. While in the case of raster minimum and maximum all pixels should be 
considered, the mean and standard deviation characteristics should better be taken 
from a distortion-aware approach. In this case the field of areal distortion can be 
calculated, then normalized and used as probability density function where higher 
density is in the areas with smaller area distortions. Then random sampling with a 
given density of points can be used to extract the values and calculate mean and 
standard deviation of raster values.  
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Conclusions 
We have illustrated that the generalization of rasters is a nuanced procedure that 

requires attention to several spatial and statistical sources of error. Most notable 
among these are the effects of projection distortion across large areas, which make 
supposedly uniform pixels in fact not uniform, and the Modifiable Areal Unit 
Problem, which confounds statistical aggregation and analysis, such as seen in raster 
coarsening and resampling. We have begun to address the issues raised by 
implementing a method using variably-sized kernels which are calibrated using the 
areal error equations of the map projection used. Further work will address statistical 
aggregation techniques and methods of measuring structure and information in 
continuous raster surfaces to enable characterization and evaluation of generalized 
images. 
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