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1 Introduction 

On-demand mapping, as the process of creating customised maps upon request from map users to 

meet their specific requirements, has attracted increasing research interests in recent years.  

Arguably, an ideal on-demand mapping system should be able to process requests from non-expert 

users and generate high quality outputs at (near) real time and with minimum human intervention. 

In this paper, we propose an approach to on-demand mapping based on the multi-representation 

spatial data model presented in [1]. This approach also facilitates multi-dimension continuous 

zooming. 

2 Two approaches to on-demand mapping 

The majority of approaches (e.g. [2]) proposed for on-demand mapping may be regarded as process-

driven. Such approaches, as illustrated in figure 1, attempt to orchestrate multiple map processing 

services (MPS) and diverse data sources to create maps in response to user requests. Theoretically 

speaking, process-driven approaches have the potential to offer maximum flexibility and best 

quality. Nevertheless, there are also some significant technical challenges: 

 Mapping user requests to map specifications 

 Mapping map specifications to appropriate map processing services and parameters 

 Response time 

To an extent, the first two issues might be addressed by standardisation and AI techniques (at the 

expense of losing some flexibility and extensibility). The performance of such a system, however, is 

unlikely to be near real-time for any reasonably large dataset, due to the NP-hard nature of many 

generalisation algorithms. 
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Figure 1: On-demand mapping: a process driven approach 

Figure 2 illustrates an alternative approach which shares some components with the process-driven 

approach but differs in data processing strategy. It pre-generalises data to create multi-

representation spatial databases and maps user requests to database queries to retrieve results on 

the fly (with optional real-time post-query processes).  

 

Figure 2: On-demand mapping: a multi-representation database approach 
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Although potentially less flexible and with quality compromise, this approach will offer much better 

performance, plus supports to local caching and continuous zooming as useful by-products. 

3 A multi-representation view to maps 

A map feature, as the depiction of a real world phenomenon, is generated at a specific spatial 

resolution to meet map users’ certain demands. Generalisation is required when users’ demand 

changes (figure 3).  Generally speaking, user demands are reflected by generalisation criteria in the 

form of generalisation metrics (which are further mapped to parameters of generalisation 

algorithms) and spatial resolution (equivalent to scale in some cases). 
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Figure 3: Effects of change on spatial resolution and generalisation criteria [1] 

A map consists of points, lines and polygons (the latter two are defined by their constituent vertices 

which are also points). A map point  can be defined as a tuple (x, y, z, r, c1, c2, …, cn, …) in a multi-

dimension abstract space S(X, Y, Z, R, C1, C2, … Cn, …) where dimensions X, Y and Z define the 

location, R represents the spatial resolution and Ci (i = 1, ∞) represents other map 

specification/generalisation criteria in various scales of measurement (nominal, ordinal, interval or 

ratio). In particular, we regard the sub-space PS(R, C1, C2, … Cn, …) as the presentation space.  

A multi-representational point pMRep (x, y, z, {ri}, {C1j}, {C2k}, …) is located at (x, y, z) and with a 

presentation range ({ri}, {C1j}, {C2k}, …) containing a resolution value set {ri} and/or other 

generalisation metric value sets {C1j}, {C2k}, … Multi-representation lines and polygons are 

constructed from multi-representation points as their vertices. Their presentation ranges are the 

unions of presentation ranges of the constituent vertices.  

This model may be illustrated by the example in [1] where multi-representation geometries are 

defined in S(X, Y, Z, RDP, WEA) where Ramer-Douglas-Peucker tolerance RDP [3] represents the 

spatial resolution dimension and the weighted effective area[4] WEA  represents a single 

generalisation metric dimension. Consequently, a multi-representation point pMRep(x, y, z, [rf, rc), [w1, 

w2)) will appear in any map specified by spatial resolution rq  [rf, rc) and generalisation criterion wq 

 [w1, w2).   

By retaining only the spatial resolution, this model will be down-converted to S(X, Y, Z, R), the special 

case of multi-resolution model which is the focal point of most previous multi-representation 

researches.  

4 Progressive generalisation for constructing multi-representation geometry 
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A multi-representation geometry, like a hologram, covers a range of spatial resolutions as well as 

generalisation metrics. It should contain many representations but remains compact storage-wise. 

Conventional generalisation method, which generalises map from resolutions A to B under a fixed 

set of generalisation metrics, is obviously inadequate for creating such a multi-representation 

geometry and a different paradigm of generalisation is needed. We believe the “progressive 

generalisation” approach [5] may provide a solution. 

The motivation of progressive generalisation came from the simple fact that: 

The minimum difference between two maps is one point.  

This point could be a point feature or a vertex on a linear feature or the boundary of an area feature. 

Consequently, if we can sweep through resolution/generalisation metric dimensions to detect the 

“event horizons” when changes to spatial resolution and/or generalisation metrics triggers 

addition/removal of map points, we will be able to pre-compute all the representations of map 

features in the presentation space. In spirit this is very similar to the well know algorithm family of 

sweep-line in computational geometry. 

Some classic generalisation algorithms are inherently progressive (e.g. Visvalingam-Whyatt 

algorithm [6] and the RDP-based BLG tree [7]). It will be more difficult to make many other 

algorithms progressive so new algorithms may have to be designed to process certain feature 

categories.  

In case of multi-dimension presentation spaces (e.g. the RDP-WEA space in the previous example), a 

priority hierarchy should be specified among different dimensions. For example, we sweep the RDP 

dimension and computed RDP intervals first; subsequently on each RDP interval we computed the 

WEA intervals. This also applies to multiple feature classes where some feature classes will take 

priority over other classes in case of interactions among features from different classes. 

The resulting multi-representation information is in the form of rectangular regions in the 

presentation space. Normally the number of regions is small (3.12 in the sample dataset and less 

than 30 bytes of storage space is required if single-precision is used). From the multi-representation 

dataset created (initially containing 5 objects and 2376 vertices), more than half a million distinctive 

representations may be retrieved by different combinations of query RDP and WEA values. 

5 Degree of Generalisation 

The difficulty to map user requests to parameters of generalisation services is two-fold: 

 For the same request (say “give me a thematic representation of Isle of Wight”) at different 

scales (due to size variation of display devices), the appropriate generalisation metrics are 

scale/resolution dependent; 

 Many generalisation services may have multiple parameters which are hard to understand 

even for human operators. 

The concept of degree of generalisation (DoG) introduced in [1] might be able to address these 

issues to some extent. The idea of DoG is to define a function DoG = f(gi, r) for generalisation metrics 
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gi (i=1, n)and spatial resolution r such that for the same value of DoG the representation retrieved 

from the multi-representation geometry is consistent in style and level of details .  
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Figure 4: DoG-based intelligent zooming (number of vertices retained is as labelled) 

Figure 4 shows the effect of “intelligent zooming” [1] which uses the DoG defined as (1 – r/wea1/2) to 

retrieve appropriate representation from a single set of RDP-WEA multi-representation geometry. 

Clearly, for the same DoG value (left to right, DoG = 0.0, 0.5, 0.75), the style of representation 

remains roughly consistent regardless the change to scale (from 1:106 to 1:107). At the same scale, 

larger DoG results in retrieval of more heavily generalised, simpler representations. 

 

Figure 5: A demo system for RDP-WEA based multi-representation geometry 

As illustrated by a demo system we developed (figure 5), if multi-representation data are 

transmitted to and cached on client-side, efficient and genuinely continuous spatial/semantic 

zooming can easily be facilitated. 
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DoG may be at any scale of measurement. Indeed, a nominal DoG (e.g. {TOPOGRAPHIC, THEMATIC, 

BACKDROP, SCHEMATIC}) may serve many purposes perfectly and it can be more easily mapped 

from user request via an ontological approach.  

DoG hides away a lot of complexities in the process of parameter value selection. Nevertheless, for 

many algorithms it is not trivial (if ever possible) to design a good DoG. Also, DoG is normally 

designed from a map maker’s point of view initially so it is almost certain that some training/learning 

process is required to calibrate a DoG to reflect map users’ views.  

6 On-going work 

Previous research on multi-representation geometry [1] used just one feature theme (coastline). 

Currently a more complicated prototype with multiple feature themes is being developed to support 

on-demand mapping. The goal of the project is to implement a multi-resolution map server to 

address the issues of scale-sparse product stacks and inconsistent cartographic styles among 

different products.  

OS MasterMap data for Isle of Wight is used as sample dataset in the project. In the initial stage, 

only a subset of feature themes is used and they are grouped into three sets: natural features (mean 

high water line as coastline, inland water line and inland water area), road network (ITN road links) 

and buildings. Our aim is to be able to process a complete theme set of OS MasterMap data 

eventually, before experimenting with additional generalisation criteria. 

 

Figure 6: Sample data: OS MasterMap mean high water lines, inland water lines and areas 

In our current process, natural features take the highest priority. A graph is constructed to handle 

the inter-connectivity among natural features. RDP is used to generate initial resolution range for 

vertices inside individual features. A dynamic constrained Delaunay triangulation is used to detect 

topological conflicts. At this stage, collapse of area details into new linear features, although 
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required (e.g. the case shown in figure 7), are not used yet. For selection of water line and water 

area features, pre-defined simple ratios between their initial length or area and resolution are used 

at present. In the future, we wish we will be able to take into consideration the distribution of 

features and network topology (when a clean hydrological network can be built upon the rather 

noisy data we have at the moment). 

 

Figure 7: inter-dependent geomorphological details: sand spit or stream? 

After pre-process to join adjacent lines and merge split areas, there are 8105 features (495405 

vertices) of the three types in the natural dataset. Below is the data displayed at around 1:100K in 

the demonstrator (note that a 38% scaling is applied on the original screenshot image). 

 

Figure 8: MHW, water line and area at about 1:100K (38% scaling on original screenshot image) 

This demonstrator inherits the “intelligent zoom” feature in the MRep-geometry prototype it is 

based. An adjustable screen resolution (representing the visual characteristics of display media) and 
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the current scale (the physical extent of current display media against the extent of the data to be 

displayed) are mapped to a data resolution which is subsequently used to filter out vertices on 

geometry to generate properly simplified representation for the specific scale. Figure 9 shows a less 

cluttered display of the data at the same scale and screen resolution (0.2mm), after “intelligent 

zoom” was switched on and data were filtered. 

 

Figure 9: Generalised data (10642 vertices) at 100K (38% scaling) 

When we zoom in, scale increase and more vertices are “re-activated” and more details are visible 

(Figures 10-12). 

 

Figure 10: at about 1:25K (46240 vertices) more details are revealed (38% scaling) 
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Figure 11: more details (74504 vertices) at about 1:10K (38% scaling) 

 

 

Figure 12: 1:5K (40% scaling). Note the filtered features (grey) in the sample at right. 

We are currently working on generating resolution ranges for roads (figure 13) and buildings (figure 

14). When we obtain further results from this ongoing research, we will create a supplement for this 

paper and make it online. Please search the authors on ResearchGate website in the near future. 
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Figure 13: Sample data: OS MasterMap ITN Road links 

 

 

Figure 14: OS MasterMap Buildings (details) 

7 Discussion and Summary 

7.1 Two important issues: 

When generalisation criteria are used in addition to spatial resolution, two issues have to be 
addressed with extra care.  
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The first issue is consistency of feature details on the same feature. In general, a detail (e.g. a bay 
window on the profile of a building) that does not appear at a finer resolution and/or smaller degree 
of generalisation should not appear at a coarser resolution and/or larger degree of generalisation. 
This principle is quite obvious in theory but inconsistency can easily be introduced in 
implementation, especially when details are defined at the level of single vertex (e.g. the cases of 
RDP and Visvalingam). For this reason, it will be desirable to explicitly define details (and more 
importantly, hierarchy of details) on feature geometry. Some discussion on this issue can be found in 
[8]. 

The second issue is that topological or proximal inconsistency may arise between various 
representations (or details in representations) of different objects if their resolution ranges are 
overlapped. For example, in Figure 10, Rep1 and Rep2 are two representations of a village (the point 
object) at the south side of a road with a removable detail. Rep1 will cause topological inconsistency 
if the detail is removed which will leave Rep1 at the north side of the road. In this case, Rep2 should 
be used instead. Rep1 and Rep2 may share the same PR and the retrieval of one of them depends on 
DOG value used for detail removal. 

 

1 

2 

 

Figure 10 incompatible representation 

The presentation ranges of the two representations may then be defined as: 

PR1 = {(r, dog, dogv)|(r, dog)PR  (r, dogv)NPRdtl} 

PR2 = {(r, dog, dogv)|(r, dog)PR  (r, dogv)NPRdtl} 

While PR is the initial presentation range shared by the two, dogv is the DOG for detail removal and 
NPRdtl is the non-presentation range of the detail in the road object. 

Note that topological inconsistency in the example above may be removed the other way around, 
i.e. dtl is removed only if the point object does not present. We may also combine the two solutions 
together, i.e. dtl depends on rep1 at finer resolution and at coarser resolution rep1/rep2 depend on 
dtl.  

Proximal consistency is a much more complicated issue. When a multi-representation dataset is 
made, proximal consistency may be guaranteed based on some default resolution-dependent 
separation distance values. However, as different symbol sizes may be specified for multiple themes 
at the client side or a selection DOG value lower than default is used to retrieve more features, 
proximal inconsistency may still present after retrieval. From a data model point of view there might 
still be some practical but complicated solutions to this problem, or alternatively, proximal 
inconsistency may be removed by applying on-line proximal conflict resolution procedures on 
retrieved data. 

7.2 Object vs space 

The method we used to compute resolution range for vertices may be classified as object-based 
partition of the resolution space. Consequently, we may claim we have achieved support to genuine 
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continuous zoom. However, it is not always easy or even feasible to implement some generalisation 
methods in an object-based partition manner.  

An alternative approach is to pre-partition the resolution space into many fine ranges, generalise 
source data towards each range, and then merge the resolution ranges of common vertices to form 
a multi-resolution geometry. Using bit-array of sufficient size (e.g. a 32-bit integer provides encoding 
capacity of 32 ranges), the width of resolution range can be very small and make the result 
effectively “continuous”. Some experiments on this approach may be found in [9]. 

It should be noted that following this approach, both the star and ladder models may be used to 
design the process flow. We believe for this purpose the ladder model (i.e. generalise result in one 
resolution range to create the result for the next coarser resolution range) has many advantages 
over the star model in maintaining consistency, identifying common vertices and merging resolution 
range. 

7.3 Summary 

The multi-representation database approach aims at circumstances that require quick response, 
output of reasonably good quality, and flexible visual presentation at client side. It is not a cure-all 
and will not replace a good process-driven system but rather complements the latter. Indeed, a 
practical on-demand mapping system may well combine these two approaches to offer a more 
versatile service. 
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