Comparison of matching methods of user generated and authoritative geographic data

E. Abdolmajidi1, J. Will1, L. Harrie1, A. Mansourian

Department of Physical Geography and Ecosystem Science, Lund University Corresponding author: ehsan.abdolmajidi@nateko.lu.se

17th ICA Workshop on Generalization and Multiple Representation, Vienna, Austria, 23rd Sept. 2014

Outline of the presentation:

- Related work
- Our algorithms
- Case Study
- Results
- Discussion
- Conclusions

Related work

Linear network matching (Doytsher et al., 2001):

- Segment-based (Line-based)
 - Walter and Fritsch (1999)
 - Ludwig et al. (2011)
 - Koukoletsos et al. (2012)
- Node-based (Point-based)
 - Stigmar (2005)
 - Volz (2006)
 - Mustiere and Devogele (2008)

Segment-based Algorithms

The segment-based algorithm is developed based on Koukoletsos et al. (2012) algorithm.

Matching steps at *segment Level*:

- 1. Buffering
- 2. 1:1 matching
- 3. Exact name matching
- 4. Similar name matching
- 5. Distance matching

At *feature level*:

- 6. Feature recomposing
- 7. VGI name similarity
- 8. Final check

Node-based Algorithms

The node-based algorithm is developed from the scratch.

Matching steps:

- 1. Node comparison
- 2. Name check
- 3. Topology check
- 4. Geometry check

Case Study

- Study area
- Gothenburg, Sweden
- Around 500,000 inhabitants

• Data

Authority data: real-estate map dataset from Lantmäteriet (LM)

VGI data: OpenStreetMap data (OSM)

17th ICA Workshop on Generalization and Multiple Representation, Vienna, Austria, 23rd Sept. 2014

Case Study – Implementation

- Both algorithms are developed in Python.
- The node-based was developed using Arcpy and Scipy libraries in the PyDev environment.
- The segment-based was developed using QGIS APIs in the python console of QGIS software.
- Spatial indexing: a) B-tree with depth of one in the segment-based algorithm (tiling), b) KDTree in the node-based algorithm.

Result - Matching

Segment-based algorithm

Dataset	Total length [m]	Length matched [m]
OSM	4596570	3550564 (77%)
LM	4691594	3800412 (81%)

Node-based algorithm

Dataset	Total length [m]	Length matched [m]
OSM	4489797	3561441(79%)
LM	4542694	3594120(79%)

Result - Accuracy

• We manually evaluated 10% of the study area.

17th ICA Workshop on Generalization and Multiple Representation, Vienna, Austria, 23rd Sept. 2014

Result - Running time

Segment-based algorithm

Matching steps	Running time (Second)
Pre-processing:	10959.00
Buffering	2500.00
1:1 matching	38.00
Exact name matching	396.00
Similar name matching	141.00
Distance matching	300.00
Feature recomposing	1401.00
Feature name similarity	252.00
Final check	1514.00
Post-processing	612.00
Total	18113 (Almost 5 hours)

Node-based algorithm

Matching steps	Running time (Second)
Pre-processing I	37
Pre-processing II	161
Node comparison	50
Semantic, topology and geometry checks	180
Total	428 (Almost 7 Minutes)

17th ICA Workshop on Generalization and Multiple Representation, Vienna, Austria, 23rd Sept. 2014

Discussion – advantages and disadvantages

Segment-based

Node-based

- Advantages:
 - The segment-based algorithm is a localized method around a segment which decreases the number of candidates.
 - the candidate segments are highly similar to the reference link. Hence, they need to less processing than the link candidates in node-based algorithm.

- Advantages:
 - Node-based is a localized method around one node which substantial decreases the number of candidates.
 - Additionally, extracting the neighbors is very simple process.
 - The node-based is using the adjacency structure which enables to track some topological relations.
- Disadvantages:
 - needs an essential preprocessing step in order to create the desired structure (data format dependent).
 - In the node-based method, the candidate list was created based on the similarity of the neighboring nodes. Hence the similarity of the links connected to them is yet to be examined.
 - The node-based algorithm is sensitive to multineighboring.
 - It is a localized approach and therefore need broader view of the features under matching to better assign the pairs.

• Disadvantages:

- The algorithm needs an essential preprocessing step in order to create the desired structure.
- The algorithm uses buffering to create the candidate list, which is highly time-consuming.
- It is a localized approach and therefore need broader view of the features under matching to better assign the pairs.

Discussion – Need for algorithm improvements

- The algorithm must be able to cope with:
 - heterogeneous geometrical representation
 - varying positional accuracy across the study area
 - complicated structures such as roundabouts and crossroads
 - data errors.
- Methods to improve the algorithm
 - To improve the node-based alg., the datasets should be enriched by graph-based and stroke-based methods before matching starts. These methods can help us to find the complex structures such as roundabouts and crossroads.
 - The varying positional accuracy can be improved by using multi buffering or cluster analyzing in order to detect the urban and rural areas.
 - Ontology and spatial ontology can be used as a data-model carrying useful information about structure, relation and classification of the features.

Conclusions

- Both the segment-based and the node-based algorithm had an accuracy of around 90% in the matching.
- The node-based algorithm is more time efficient and is therefore more suitable for huge datasets matching.
- The short-comings of the node-based can be covered by employing more processes with a few impact on the whole running time.

