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Simple data format, but… 
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Cell value recalculation 

 

Cell scaling and resampling 



Framework for raster generalization 

 

• Need a useful paradigm for geographical 
raster generalization 

• Specialized thematic maps can’t just use 
resampled and averaged rasters 
e.g., climatology, oceanography, social science, vector fields, etc. 



Frameworks 

Cartography: 

• McMaster & Monmonier 1989 

• Li et al. 2001 

• Peuquet 1979 

• … also much DEM generalization work 

 

Computer Science: 

• Scale-space theory 



M&M 1989 

 

1. Structural generalization 
(resolution changes) 

2. Numerical generalization 
(kernel-based convolution) 

3. Numerical categorization 
(image classification) 

4. Categorical generalization 
(kernel-based simplification of categ. data) 



Scale-Space Theory 

Scale-space theory is a framework for multi-scale signal 
representation developed by the computer vision, image 
processing and signal processing communities with 
complementary motivations from physics and biological vision. It 
is a formal theory for handling image structures at different 
scales, by representing an image as a one-parameter family of 
smoothed images, the scale-space representation, parametrized 
by the size of the smoothing kernel used for suppressing fine-
scale structures. 

--Wikipedia 



Pointes de généralisation 
(Ratajski 1967) 

• Scales at which information content cannot be 
maintained (e.g., quantified by entropy) 

• Scales at which patterns cannot be maintained 
(e.g., quantified by Moran’s I, etc.) 

• Scales at which features cannot be planimetrically 
represented (Nyquist-Shannon sampling theorem 
and resolution) 

• Scales at which features must manifest at higher 
order (e.g., trees to forest, dunes to desert, etc.) 



Unexplored raster gen topics 

• Entropy (explorations by Bjorke, Li, Knöpfli, 
etc.) 

• Multi-band raster generalization 

• Evaluation 

• Operator sequences 

• Star vs. Ladder 

• Projection distortions in data processing 



Raster processing with 
variable kernel shapes 

Case study 



Map projection distortions  
and generalization 

• Generalization in small scales is 
highly affected by map projection 
distortions 

• Various measures that are used in 
generalization as constraints and 
parameters depend on local 
distortion ellipse 

• Small-scale generalization 
workflow should be aware of this 
issue 



Measures 

Mercator 

• Distances, areas and polar angles differ greatly 

• Results of generalization will depend on projection 

Mollweide 
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Raster processing 

• Floating window techniques 
— standard for numerical 
generalization of rasters 

• Standard issue: wrong slope 
angles, flattened or over-
exxagerated hillshading due 
to map projection 
distortions. 

• Biased raster statistics 
(mean, standard deviation) 
due to areal distortions 



Floating window processing 

Geometric 
• Fixed tesselation 

neighborhood  
(3x3, 5x5 etc) 

• Advantages: 
– Standard technique with fixed 

kernel can be applied 

– Quick processing 

• Disadvantages 
– Incorrect calculation of 

derivatives 

Geographic 
• Fixed geographic 

neighborhood (variable 
according to local distortions) 

• Advantages: 
– The same geographical 

neighborhood is processed 
everywhere 

– Correct calculations of 
derivatives from rasters 

• Disadvantages: 
– Slow processing 



Geodetic calculations? 

NO 



Workflow 
1. Define the initial shape of the kernel  

2. Sample raster area by the control points which are 
equally spaced in degrees.  

3. Calculate the parameters of distortion ellipse at each 
point using projection equations.  

4. Using distortion ellipse parameters, define the local 
matrix of affine transformation 

5. Transform initial kernel shape and rasterize it. Round 
the size of the kernel to the odd number if needed. 

6. For each pixel in initial raster find the closest control 
point and assign its number to the pixel. 

7. Process the whole raster using kernels from assigned 
control points. 
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Meridian and  
parallel scales 
m = n = 1/cos(B)  

Angle between  
meridian and  
parallel 
Θ = π/2  

Mercator 
Projection 



Source 
DEM 



Simple 
Filtering 



Variable 
Kernel 



After Processing — Equal Area Conic 



Conclusions 

• Variable kernel shape is useful for: 

– Geographic averaging and analysis, calculation of 
derivatives 

– Emphasis on map projection distortions  
(variable detail on map) 

• Future perspectives: 

– General processing framework (all projections) 

– Asymmetric filters (large geographic area) 
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