Large scale road network generalization for vario-scale map

7-9-2015

Radan Šuba, Martijn Meijers, and Peter van Oosterom

18th ICA Workshop on Generalisation and Multiple Representation, 21st August 2015, State University of Rio de Janeiro, Brazil
Vario-scale road networks

- Automatic processing of all roads from detailed to less detailed scale in vario-scale manner *without fixed levels* → *continuous scale*

- Our ultimate goal:

 large scale | collapse | small scale

 areas | **lines**

- Earliest (tGAP) work focused on area features only (incl. roads)
- Previous work focused on smaller scales (lines), ICA 2014 workshop
- Now *think* about on transition (areas→lines), not yet implemented
Smaller scale road network generalization in tGAP (ICA 2014)

Roads are lines (edges in tGAP)

Main idea:
merge terrains (road cycles) faces
remove shared edge (road)
Road as areas (from Dutch base map: to be used at 1:500 – 1:5,000)
Base map, zoomed out
Roads as lines (NWB 1:25,000) → shock
Road network generalization: levels of granularity

Granularity indicates number of elements involved per step:

- **Coarse**: one or more complete classes is generalized; e.g. all highways
- **Medium**: group of features are generalized together; e.g. road consists of multiple parts
- **Fine**: individual part, object or road segment; e.g. segment between junctions (or different speed/material)
Pro’s and con’s of granularity levels

• Coarse/medium
 pro: easy to read
 con: content shocks, computational expensive, complex problem

• Fine
 pro: more gradual, easier to compute, history of steps, feature links
 con: can be ‘disturbing’
Fine granularity, (no) overall recipe

- Assume: connection road class of equal importance and junction class of higher importance

- Normal tGAP algorithm → remove least important feature (collapse)

- tGAP with both areas and lines features
tGAP creation (road network)

- Start with area partition consisting of 3 types of faces:
 1. non-road
 2. road connection (2 road neighbours)
 3. road junction (more)

- Select least important face, then in case:
 1. face is non-road, when possible merge with best adjacent non-road; When not possible, raise importance and back in queue
 2. face is connection and there exists neighbour connection, then merge; Otherwise collapse road connection face to line
 3. face is junction, only collapse if adjacent road connections are lines; When not the case, raise importance and back in queue

- Continue (at least) until road features are all lines
Remove least important feature

Collapse area to line

Merge with neighbour → 'boundary' removed (in this case allowed)
Remove least imp face (non-road)

Problem: all neighbors road faces...
2 options to continue: 2 road merges or... 1 split+merge parts

(green=non-road, dark grey=connection, light grey= junction)
Some discussion

- Fine granularity indeed preferred by users? → usability test
- Just ideas presented, basic operations (split, merge) available, but is overall process steering Ok?
- Features not too often put back in queue with higher imp?
- Now only one non-read class, but in reality more classes (with different imp and characteristics) → more challenging
- Can road subclass granularity level be obtained by simple part-by-part tGAP approach? (first all minor roads collapsed to lines, before next level)

- Line road segment only removed when 2 neighbour non-road faces merge, because one was least imp (alternative: also select least imp line features (road) in tGAP?)
Thanks

• for your attention!

• for support by the Dutch Technology Foundation STW (project number 11185)

• Suggestions, Questions?