
HOMOGENIZATION OF FACADE STRUCTURES

R. Guerckea, ∗, M. Sesterb

a Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany - guercke@ipi.uni-hannover.de
b Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany - monika.sester@ikg.uni-hannover.de

KEY WORDS: Generalization, 3D Models, Homogenization, Facade Structures

ABSTRACT:

In this paper, we introduce the generalization operator of homogenization as the replacement of k different objects by k references to
a single template object. This approach can reduce the size of the data set and the complexity of location- and orientation-invariant
processing tasks consisiderably because those tasks only have to be applied to the template object instead of all original objects. The
task is to identify similar objects that can be replaced by a common template, i.e. be treated as identical. As exact identity of the
objects’ parameters can only be enforced by changing parameters, which, in turn, incurs costs in terms of a generalization objective,
this leads to an optimization problem. As an example, we investigate the homogenization of objects within rectangular blocks of cells
in a grid-like facade layout as an optimization problem and derive a Mixed Integer Pramming (MIP) representation for this problem.
We present results of solving the resulting MIP problems for a set of real-world facade structures.

1. INTRODUCTION

We define the generalization operator of homogenization (we use
homogenization as a preliminary name; finding a perhaps more
fitting and less ambiguous name may be the subject of further
discussion) as the replacement of k different objects (instances
of a class with a set of parameters) by k references to a template
object.

Even though we do not reduce the number of objects or parame-
ters per object in the scene, the total amount of data to be stored
and processed can be reduced considerably in a digital environ-
ment by this operator because the set of parameter values has to
be stored only once for the template object, while the references
need to store only the ID of the template object and a geometric
transformation that puts them in the right position and orientation
in space.

In addition to this reduction in memory footprint, location- and
orientation-invariant processing tasks like volume calculation, ba-
sic geometric simplification approaches or force resistance pa-
rameters for different angles of impact have to be performed only
once on the template object instead of all instances. Conversely,
this also means that we can treat objects at a much more fine-
grained level with a reduced level of prcessing requirements: We
can process thousands of instances of a template object at once by
processing the template, so instead of processing coarse models
for each instance of, say, the IKEA Billy shelf (appearing quite
frequently in central Europe) we can process one high-quality in-
stance (with every nut and bolt) once and use the result for all
instances, at once saving effort and increasing the quality of the
result.

Note that homogenization can be applied to objects of any given
class Whole 3D building models, 2D shapes on maps or even
individual objects within larger ones like shelves, power plugs or
door handles within (and across!) buildings.

In order to perform homogenization, we have to find a set of pa-
rameter values for the template object on which all original ob-
jects can agree – meaning that their parameters can be replaced

∗Corresponding author.

by the common value without exceeding the postulated general-
ization accuracy tolerance (e.g. in a Hausdorff sense).

Further opportunities for reductions of storage space and com-
plexity as well as additional options for further simplifications
occur if the objects are distributed in a regular structure. In this
paper, for example, we consider facade openings (windows and
doors) arranged in a logical grid of rectangular cells.

In such a setting, we only have to store the row and column in-
dex for the different references while all other parameters like the
width and height of the cell, the location of the opening in the cell
and the dimensions of the opening only have to be specified for
the template object.

Taking this one step further, if we know that all cells within a
rectangular region within a grid structure are covered by instances
of the same template, we only need to store the indices of the start
and end rows and columns of the rectangular region instead of the
template ID, row and column indices for all cells.

We refer to blocks of cells that are replaced by the same template
as clusters or tiles. An assignment of all cells in a grid to a set
of clusters is called a tiling of the structure. Note that we use the
term cluster also for groups of objects that are replaced by the
same template if the distribution does not happen to be a regular
grid.

The concept of homogenization can be extended by introducing
exception or difference parameters that may be specified for dif-
ferent references to the same template object. This makes the
concept considerably more flexible and versatile. If, for example,
we have a large rectangular facade of a shopping center with 5
floors with 20 almost (within the generalization accuracy) identi-
cal windows in each and a single door in the 5th column of the
ground floor, we can represent this as a 20x5 grid of instances of
the template window object with an exception in cell (0, 4) which
contains our door object.

The compactness of such a description makes it also very suitable
for multiple-LoD data sets: Just by dropping the exception, sim-
plifying the template and employing typification, we can easily
derive a low-LoD version of our model. Intermediate LoDs can

(a) Original facade.

(b) A tiling with four tiles.

Figure 1: A tiling for a facade structure.

be produced by independently simplifying the individual door el-
ement and the template element (and optionally the distribution,
e.g. through a typification) of the windows.

In the second part of this paper, an algorithm is presented for
an automatic clustering of grid-structured facades into rectangu-
lar clusters because the compactness and regularity of the rect-
angular shape of the resulting homogenized blocks ensures that
further generalization operators like typfication can be employed
with maximum ease and effect at later generalization stages.

As an introductory example, consider Figure 1. It shows the result
of homogenization, where mainly the depth differences between
the different parts of the facades have been aligned, leading to a
large, homogeneous main facade.

The combinatoric optimization problem underlying this setting
consists of the decision which original objects should be clus-
tered, i.e. replaced by the same template. The objective function
is a linear combination of the number of resulting regions and the
sum-of-squares of the changes in the parameter values for all ob-
jects. In (Guercke, 2014), this problem is shown to be NP-hard
even if there is only one parameter for each cell.

In the following section, we first give a more detailed definition
of the homogenization operator and compare it to other gener-
alization operators, followed by a review of the Mixed Interger
Programming approach introduced in (Guercke, 2014) for regu-
lar facade structures. In section 4, examples show the potential
of the method for facade structures of different complexity. A
summary and outlook on future work conclude the paper.

2. HOMOGENIZATION AS A GENERALIZATION
OPERATOR

In this section, we give a more detailed definition of the homoge-
nization operator and show the differences to the similar classical
generalization operators.

At the end of this section, we put the contents of this paper into
the context of the current state of research on generalization op-
erators and building model generalization.

We assume that the digital model is given as a collection of ob-
jects of semantic classes like buildings, roads, roofs etc., where
each class has a number of properties that assume different values
for the different instances. This model can be hierarchical, mean-
ing that objects may contain other objects: A facade object, for
example, may contain several window, door, and balcony objects.

Homogenization is the replacement of several objects of the same
class with potentially different parameter values (for example,
different heights) by instances of a template with fixed values for
all parameters. This means that for all objects that are to be re-
placed by the same template, a common value for all parameters
has to be found.

In the following, we compare this operator to the classical carto-
graphic generalization operators described, for example, in (Hake
et al., 1996):

Simplification An object is represented by a simplified version
of itself.

Enlargement, Exaggeration – In many cases, objects are too
small to be recognizable at the target scale andhaveto be
enlarged; objects of higher importance may be exaggerated
beyond the necessity of being visible in order to make them
more prominent.

Displacement – In order to avoid cluttering the resulting map,
objects may have to be shifted away from their original po-
sition.

Aggregation – Objects of the same class are merged into one
bigger object of the same class.

Selection of relevant or elimination of less relevant features to
avoid cluttering the resulting map.

Classification, Symbolization – Objects of more special classes
are treated as objects of more general classes and may be
represented by a symbol for this more general class.

Typification – n objects of similar classes are represented by
k < n objects of the same or a more general class.

Homogenization is not a simplification of a given object in a strict
cartographic sense because the complexity of the object itself,
i.e. the complexity of its shape and the number of parameters
describing a given object, remains unchanged.

This is the reason why homogenization is a digital generalization
tool: While it offers huge potential for reduction of complexity in
a digital setting, the resulting objects on a rendered map have the
same complexity as before, and the effects are mainly aesthetic
(giving a more regular impression) if no further generalization
steps are employed.

An object is not explicitly enlarged by a homogenization step
– some object may, of course, be enlarged, but others will be
smaller afterwards. Neither are objects displaced with the pur-
pose of a cleaner distribution of the objects on a map.

After homogenization, all objects that are replaced by references
to the same template still remain distinct entities, while aggre-
gated objects are merged into a single larger object.

Homogenization is neither selection nor typification because the
number of objects is not reduced, but it can be employed before
a typification step to identify sets of features with similar proper-
ties.

The pattern of homogenization before typification can be espe-
cially useful for multiscale datasets: Homogenization (especially
with explicit handling of exceptions) can be employed to pro-
duce the multiscale data set from which simplified models can be
derived by employing typification to the different homogenized
regions in the original data set.

Since homogenization itslef does not imply a change of the class
of an object, it is not a classification. If we model the class of an
object as a parameter of the homogenization, class changes may
occur, but they are inherent to the concept. We may also perform
a classification before the homogenization in order to avoid hav-
ing to explicitly model class changes if the specific classes of the
objects are not of major importane to the application at hand.

Including semantic aspects into a homogenization implementa-
tion can be achieved by introducing label parameters for the class
of the features. In this case, the mapping from the different pa-
rameters of the classes involved to the parameters to be homoge-
nized has to be known. In the simplest case, the homogenization
is performed on the parameters of a common superclass of all
classes involved (plus a parameter for the class label). Then we
can define penalties for class label changes due to the homoge-
nization (i.e. assigning a common class label to all instances in a
cluster) or forbid certain class label changes.

Note that the operator of homogenization is independent of the
spatial distribution of the features to be homogenized; this spa-
tial distribution may be chosen according to the problem at hand.
This distribution may be known to follow a certain pattern (like
the regular facade structures in the example or buildings along a
road) or be inferred statistically from the original distribution to
maintain maximum similarity with the original.

The question if homogenization has to be regarded a generaliza-
tion operator can only be decided if a very precise definition is
agreed upon within the community of what a generalization op-
erator is – which is not the case yet (as far as the authors are
aware). Especially a distinction is needed between a generaliza-
tion operator and the additional aspects a genralization algorithm
has to take into account that uses or implements an operator (or
more than one operator).

Some of the most important of these aspects are (among many
others): How to partition the data set (either to apply different
operators to different subsets or to cluster the objects in a sub-
set, e.g. in the context of aggregation or homogenization – this,
if it is necessary, is often the computationally hardest problem),
how to simplify the spatial distribution of the objects, and how
to reassemble composite objects from simplified part objects in a
hierarchical model.

In (Anders, 2005), an approach for the typification of regular
structures in spatial data sets is described for road patterns and
facade structures.

(Ripperda, 2008) uses a sophisticated facade model based on shape
grammars to generate model proposals for the reconstruction of
facade structures in an approach based on reversible jump Markov
chain Monte Carlo (rjMCMC) simulation.

(Sester and Klein, 1999) propose a rule based simplification of fa-
cades for different Levels of Detail, based on a semantic building
model. In (Fan et al., 2009), an approach for the generalization
of models in the CityGML data format (Kolbe et al., 2005) is de-
cribed. In this paper, simplification approaches for the geometry
of the facades and indiviual windows are presented as well as a
user survey on different approaches for the layout of objects in a
regular grid after typification.

3. A MIXED INTEGER PROGRAMMING
REPRESENTATION FOR THE FACADE

STRUCTURE HOMOGENIZATION PROBLEM

After having introduced the operator of homogenization, we present,
as a second contribution of this paper, an approach for a specific
homogenization scenario: the homogenization of regular facade
structures.

In this scenario, the task is to partition a facade structure con-
sisting of rectungular cells arranged in a regular grid into a set
of clusters in which all facade elements are replaced by the same
template object.

We also require the clusters themselves to be rectangles in order
to produce results with maximum regularity that are best suited
for subsequent typification steps. Although, on the first glance,
this seems to simplify the problem, this rectangularity constraint
turns out to make the problem much harder. While it can be in-
corporated in the MIP-based approach through a few additional
constraints as shown in this section, it makes the design of alter-
native probabilistic approaches based on Monte Carlo techniques
extremely difficult (at least the authors of this paper could not de-
velop a convincing one so far) because the notion of similar solu-
tions or a neighborhood of solutions which is critical for Monte
Carlo methods is most difficult to define for rectangular tilings.

We state this problem as an optimization problem defined by a
set of constraints and an objective function. The degree of gen-
eralization is controlled by thresholds imposed on the change of
the parameter values through hard constraints; the connectedness
and rectangularity of the clusters is also ensured through hard
constraints.

The objective function (in our definition, to be minimized) is a
weighted sum of two groups of objective terms

1. the total number of clusters and

2. a sum of squares (weighted by an impact factor for the pa-
rameter) of the parameter changes.

In our setting, we assign a large weight to the number of clusters
and a lower weight to the parameter changes, so tha minimiza-
tion of the number of clusters takes precedence over the mini-
mization of the parameter changes. Note that the combination of
the minimzation of the number of clusters and the thresholds on
the parameter changes define the core of the optimization prob-
lem, while the second objective chooses the “geometrically most
similar” of the minimum-size tilings and causes the parameters
within the clusters to be set to the mean of the original values (if
the thresholds allow this).

The approach introduced in this paper is similar to the graph-
based approaches used in (Haunert, 2009) for the aggregation of
land parcels in map generalization and in (Guercke et al., 2011)
for the aggregation of LoD 1 building models.

As in these cases, one member is defined as the representative
(also referred to as center in (Haunert, 2009) for each cluster in
the result. In the case of our facade homogenization problem, this
means that one cell will be designated as the representative of a
given tile. Note that this representative does not have to be a kind
of geometric center of the tile as the term center suggests – in
fact, we will define the center to be the lower left corner of each
tile to avoid ambiguities.

We define a set of variables X(a,b),(i,j) that are TRUE if a cell
(i, j) is assigned to center (a,b). In our case, the underlying
neighborhood graph is implicitly given by the logical grid struc-
ture of the facade.

Because the center has no other function than to represent the tile,
the constraints defined in the rest of this section are designed in
such a way that the center of each tile is the lower left cell in the
tile. This definition has the advantage that it reduces the ambi-
guity of optimal solutions (and therefore the number of possible
solutions the solver has to explore) considerably and that it sim-
plifies the constraints for ensuring the rectangular shape of the
clusters significantly. Additionally, it saves variables because the
variable X(a,b),(i,j) only has to be defined for i ≥ a and j ≥ b.

For this reason, iterating over all variables would be denoted
in the form: ∀(a, b) ∈ Cells, ∀i ∈ {a, . . . , NR − 1}, ∀j ∈
{b, . . . , NC − 1}). As a short form for this expression we write:
∀(a, b), (i ≥ a, j ≥ b) ∈ Cells, meaning that i and j will assume
all valid values in the given array greater than a or b, respectively.

In the following, the constraints and objectives of this optimiza-
tion problem are described. We will number constraints and ob-
jectives separately, so, for example, C2 is the second constraint
and O1 the first objective term (the whole objective function is a
weighted sum of the objective terms).

C 1 Cells can only be assigned to centers:

The first constraint states that cells can only be assigned to
centers where a center is a cell that is assigned to itself:

∀(a, b), (i ≥ a, j ≥ b) ∈ Cells : X(a,b),(i,j) ≤ X(a,b),(a,b).

Figure 2 shows the X(a,b)(i,j) variables that were assigned
the value TRUE for a tiling of our illustration facade. The
black lines connect the cells in the tiles to their centers; the
circular lines at the centers illustrate that for each center c =
(a, b), the variable Xc,c is TRUE. Constraint 3. ensures that
a cell can only point to a center: Each black line terminates
in a center in figure 2.

C 2 A cell is assigned to exactly one center:
Additionally, all cells will belong to exactly one tile (center)

if (i, j) is part of the facade and to none if it is a background
cell:

∀(i, j) ∈ Cells :

i∑
a=0

j∑
b=0

X(a,b),(i,j) = 1− BG(i, j),

BB(0,1)

A
(0,0)

C
(1,3)

D
(4,3)

X X X

Figure 2: Visualization of the TRUE X(a,b)(i,j) variables for a
tiling of a facade.

where BG(i, j) is TRUE(=1) if (i, j) is a background cell
and FALSE(=0) if not. The black crosses in the unoccupied
cells in figure 2 illustrate that none of the X variables is set
to TRUE for the background cells. For the other cells, this
constraint makes sure that only one of the outgoing X vari-
ables is set: there is only one black line from each occupied
cell in figure 2.

O 1 Now we can define the objective of using a minimum num-
ber of tiles:

MIN

W#f

∑
(a,b)∈Cells

X(a,b),(a,b)

 ,

where W#f is a constant factor that expresses the relative
weight of the number of tiles compared to the other objec-
tive terms. The sum counts the number of centers because a
center is defined as a cell assigned to itself.

B

C
(1,3)

A
(0,0)

B
(0,1)

D
(4,3)

Figure 3: Constraint set 3. for the tiling in figure 2.

C 3 Cells in rectangle between a cell and its associated center
must also be assigned to the center:

The following constraint set ensures that the center of a tile
will be its lower left corner and that the rectangle between
a given tile and its associated center must be part of the tile
defined by the center:

∀(a, b),(i ≥ a, j ≥ b) ∈ Cells :

X(a,b),(i,j) ≤ X(a,b),(i−1,j) if i > a

X(a,b),(i,j) ≤ X(a,b),(i,j−1) if j > b.

A cell (i, j) can only be assigned to center (a, b) if its pre-
decessors in x (second constraint) and y (first constraint)
direction are also assigned to the same center. Note that if
cell (i, j) is already in the same row or column as the cen-
ter (a, b), the corresponding predecessor must not be forced
to be assigned to the same center. For this reason, the con-
straints for the predecessors in y direction are only defined if
i > a and the constraints for the predecessors in x direction
are only defined if j > b.

The transitive effect of these constraints on the predeces-
sors ensures that for all tiles (i, j) all cells in the rectangle
spanned by (a, b) and (i, j) must be assigned to (a, b) if
(i, j) is assigned to (a, b).

Figure 3 illustrates this effect for a valid tiling: The horizon-
tal arrows show the implications enforced by the first con-
straint (in x direction), the vertical arrows the implications
in the y direction. Since the center is the bottom left cell in
the tile, all arrows have to converge towards the center and
no predecessor of a cell in the tile can be left out.

This does, however, not yet ensure that each tile will be a
rectangle.

Figure 4: Valid non-rectangular tile under constraint 3..

Figure 4 shows that in constraint 3., there is a “loophole” that
allows non-rectangular tiles: In the upper right corners, fragments
may be cut out of the rectangle without violating the constraint.
The light gray cells that define the two basic rectangles of the tile
shown in the figure may also be left out; the dark gray cell in
the bottom line, for example, must, however, be part of the tile
because it is “covered” by the cell above it.

C 4 Close the rectangle to upper right:
In order to ensure that the tiles are rectangles, we define a

constraint that works in the opposite direction compared to
constraint 3.:

∀(a, b),(i > a, j > b) ∈ Cells :

X(a,b),(i−1,j) ∧X(a,b),(i,j−1) ⇒ X(a,b),(i,j)

−→ X(a,b),(i,j) ≥ X(a,b),(i−1,j) + X(a,b),(i,j−1) − 1.

This closes the rectangle in the direction of its upper right
corner: If both predecessors of a cell in x and y direction

point to the same center, the cell itself has to point to this
center as well. Note the “>” in the ∀-clause: This constraint
will only concern cells that are located neither on the same
row nor on the same column of a given possible center.

This constraint only works in context with constraint 3. be-
cause it only performs the closing in the upper right direc-
tion. A more generic implementation in which the center
may be an arbitrary member of the cluster would require a
more sophisticated set of constraints.

In the linear form given in the second row, the right side
of the constraint is 1 if both predecessors point to the same
center (a, b), so X(a,b),(i,j) has to be TRUE as well in this
case. Otherwise, the right side is 0 or -1, so the constraint is
relaxed.

The parameters are handled by assigning tile parameter values
to the centers of the tiles. Since we do not know which cells
are going to be centers, there have to be parameter placeholders
V(i,j),p for each parameter p for all cells (i, j). For cells that are
not centers, we force this variable to equal the value of the center
and use it to calculate the difference D(i,j),p between the original
value v(i,j),p of parameter p and the new value V(i,j),p defined by
the covering tile for each cell (i, j).

C 5 Ensure homogeneous parameter values within the clusters:
First, we make sure that all cells in a tile have the same value
for each parameter:

∀(a, b),(i > a, j > b) ∈ Cells, ∀p ∈ P :

V(i,j),p ≥ V(a,b),p −Mp

(
1−X(a,b),(i,j)

)
V(i,j),p ≤ V(a,b),p + Mp

(
1−X(a,b),(i,j)

)
,

where Mp is an adequate “big-M” value for parameter p, for
example the maximum difference between two values of p
in the original facade data set. The purpose of the Mp(1 −
X(a,b),(i,j)) term is to relax the constraint for all centers to
which p is not assigned (otherwise, the value of p would
have to be same in all cells). For this reason, Mp is defined
to be greater than any possible difference between V(i,j),p

and V(a,b),p, and Mp(1 − X(a,b),(i,j)) evaluates to Mp if
(i, j) is not assigned to (a, b).

This means that the first constraint becomes V(i,j),p ≥ V(a,b),p−
Mp which will be satified for all sensible values because
V(a,b),p and V(i,j),p will not leave the interval in which the
original paramters were distributed: With V(a,b),p in the orig-
inal interval, V(a,b),p −Mp will be smaller than (or equal
to) any value from the valid interval which we may assign
to V(i,j),p, so the constraint is relaxed (fulfilled for any sen-
sible value of V(i,j),p) if (i, j) is not assigned to the center
(a, b). By the same argument, the second ≤ part of the con-
straint is relaxed if (i, j) is not assigned to the center (a, b).

If (i, j) is assigned to (a, b), then the term Mp

(
1−X(a,b),(i,j)

)
becomes 0 and the two inequalities can be merged to the
equation V(i,j),p = V(a,b),p. So all cells within a tile have
the same values for each parameter as the center which means,
by the transitivity of the “=” relation, that all cells have the
same value.

C 6 Introduce variable D(i,j),p for the change of parameter value
due to homogenization:

Now we set the variables D(i,j),p to hold the (absolute value
of the) difference between the value V(i,j),p of parameter p

in the tile and the original value v(i,j),p of p in cell (i, j).
Since we will use the variables D(i,j),p only in contexts
where a minimum value is desired, we do not need to de-
fine constraints that enforce an upper bound on |D(i,j),p|:

∀(i, j) ∈ Cells, ∀p ∈ P : D(i,j),p ≥
∣∣V(i,j),p − v(i,j),p

∣∣
In order to capture the absolute value of D(i,j),p, we split
this relation into two inequalities for values greater or less
than zero:

D(i,j),p ≥ V(i,j),p − v(i,j),p

D(i,j),p ≥ −V(i,j),p + v(i,j),p,

We introdude the variables D(i,j),p because their value is
used both in constraint C7 with a hard threshold to define
the desired level of generalization and in objective O2 where
it is used to make the solver determine the values V(i,j),p to
be the mean of the original values v(i,j),p of all cells in the
same cluster (if the hard threshold C7 allows it).

C 7 Threshold for D(i,j),p (degree of generalization):

Now we can easily implement the constraint of bounding
the homogenization error for each parameter in all cells:

∀(i, j) ∈ Cells, ∀p ∈ P : D(i,j),p ≤ ∆p

O 2 Minimize sum of squares of all D(i,j),p:

Finally, we add the penalties for the parameter errors to the
objective function:

MIN

 ∑
(i,j)∈Cells

∑
p∈P

Wp D
2
(i,j),p.

This final objective term ensures that the resulting value for
each parameter p for a given tile is the average of the values
in the cells of the tile – if the difference threshold allows the
parameter to assume this value.

Had we used the sum of the oridinary (non-squared) param-
eter differences in this objective, the result would have been
the median of the values instead of the mean – which, in a
typical adjustment setting, is what we would expect. The
squared values in the objective function make the whole
problem considerably harder to solve; furtunately, the cur-
rent version of CPLEX could handle this problem for the
instances we used in our tests.

Note that is easy (while not actually done in the experiments)
to introduce semantic aspects into the problem using a similar
mechanism by defining numeric variables that encode the class
of the object in the tile, for expamle 0 for WINDOW, 1 for DOOR,
and 2 for ORNAMENT. Of course, we would, in this case, not use
constraint C7 and objective O2 in the same way as for continuous
parameter variables.

Instead, we would define mutual exclusion tables for the semantic
classes and introducde constraints that forbid cells with mutually
exclusive classes to appear in the same cluster (semantic class

equivalent of hard constraint C7). Additionally, we can define a
semantic objective that minimizes the sum of class label change
costs (defined in a between-classes transition cost table) corre-
sponding to a soft constraint or objective term similar to objective
term O2 penalizing semantic class change.

4. EXAMPLES AND RESULTS

The effects of the homogenization process are illustrated with the
help of examples in this section. We can see that the general-
ization process provides visually convincing results for simple as
well as non-trivial setups.

For all experiments, we use the commercial MIP solver CPLEX
(IBM ILOG, 2011) which can be used without fee in academic
contexts because it offers high performance and could solve all
problem instances of our test problems (including the quadratic
versions).

Figure 1 shows an example of a small facade part modeled after a
facade from a typical townhouse. In this simple case, the protru-
sions were pushed back into the main facade plane and originally
slightly different measures of the windows were set to identical
values.

Because tiles are supposed to be rectangular, the windows in the
gables of the dormers on top of the protrusions are not part of the
main tile covering the upper floors. For this reason, they are left
in their initial protruding position because changing the depth of
a tile incurs a penalty in the optimization function.

In (Guercke, 2014), the impact of different weights for differ-
ent parameters is discussed at length for an example. Figure 5
shows the different homogenization results for the case in which
the difference in window height is considered more harmful (and
therefore receives a higher penalty) than the difference in window
width (Fig. 5(b): Wheight > Wwidth in objective O2), and vice
versa (Fig. 5(c): Wheight < Wwidth).

Note that the simplification of the top and bottom rows are in-
dependent in this example, and the width and height parameters
as well as the depth differences between regions D and E and
regions E and F are equal. For this reason, it can happen that
the mergings of the regions in the top and bottom rows are not
aligned. In the case shown in figure 5, one would, for example,
intuitively have merged regions E and F rather than regions D
and E in order to achieve a more homogeneous appearance.

Another issue is the fact that small differences in the depth of
cells that are not part of the same homogenization tile are pre-
served. If we brought them to the same depth, we could save
the wall surfaces that are needed to connect the tiles in order to
close the facade. For this reason, it makes sense to add a term to
the objective function that rewards bringing adjacent tiles to the
same depth. The perspective view in figure 5 shows the different
depths of the facade parts and how they are changed within the
homogenization process.

Figure 6 shows a complex facade structure covering one side of
a block of townhouses in Hanover (Schneiderberg). The figure
shows a screenshot of a part of a point cloud acquired using the
Riegl VMX 250 mobile laser scanning device available at the In-
stitute of Cartography and Geoinformatics (IKG).

In Figure 7, an abstract representation of the facade structure is
shown in the first row. This representation was ceated manually
from measurements within the point cloud; ornaments above the

A

D

B

E

C

F

(a) Original facade. (b) Result with higher penalty for
window height.

(c) Result with higher penalty for
window width.

Figure 5: Homogenization results with different penalties for window width and height.

Figure 6: A facade structure covering a part of a block.

(a) Original

(b) Target resolution % = 0.3m

(d) % = 5.0m

Figure 7: Cells for the facade structure in figure 6.

windows were ignored in this process (by decision of the opera-
tor) and windows and doors were treated in the same way. The
lines dividing the facade are the boundaries of the underlying
cells.

In the following rows, results of the homogenization process are
shown for a large scale (desired resolution % = 0.3m) and a small
scale (% = 5.0m) generalization request; the lines in the figure
mark the boundaries of the homogeneous regions. Note that even
for the large scale scenario, many large homogenization groups

could be formed because the parameters of the openings in the
tiles were very similar – especially in the upper floors.

Especially the slightly generalized version in the second row shows
that in the current version, an alignment of the heights is only
performed within the tiles, not along a whole row of windows –
although the windows were almost aligned in the original model.

The rightmost building in the facade string (shaded in the bot-
tom row of the figure) is similar in its structure to the example
illustrating possible advantages of combinations of aggregation
and homogenization. Because in the current version, only ho-
mogenization is applied, the maximum number of four columns
of windows (from the four windows in the top row) are generated
for the homogenized facade part.

5. CONCLUSION AND OUTLOOK

In this paper, the generalization operator of homogenization was
introduced. It was established that, for data compression, homog-
enization in itself is a means of generalization if efficient struc-
tures representing grids of identical features are available.

An optimizing approach to solve the problem for facade objects
arranged in a regular grid structure was introduced and evaluated.
The examples show the potential of the approach, in that it allows
to define abstract constraints and objectives, which are then opti-
mized.

The elegant effect of such an approach is that the quality of the
result can be evaluated with respect to a well-defined objective
function subject to the given constraints; also, the choice of dif-
ferent penalty values leads to different results. Furthermore, the
algorithm can be applied sequentially, leading to a generalization
hierarchy in terms of different LoDs.

The facade homogenization problem was examined in an isolated
fashion. Even though facade homogenization is in itself a gener-
alization step, it is, however, strongly related to aggregation and
typification; it may, in fact, be interpreted as a degenerated case
of a typification in which a set of k features is replaced by a set
of k′ identical symbolic features where, for the homogenization,
k′ = k and for a typification, k′ < k.

As shown in (Guercke, 2014), performing an aggregation step
before a homogenization step can increase the number of options
for the homogenization. The decision which of the generaliza-
tion operators are best applied to which parts of a facade or if
an optimal result can be achieved by different sequences of the
operators for the different parts of a facade is a most involved op-
timization problem (model selection) on top of the optimization
of the homogenization process introduced in this paper.

An important aspect to be integrated in future versions of the fa-
cade simplification is the special role of the (relative) depth of the
facade tiles: Even if they do not have anything else in common,
we can save several wall, roof and floor features if two adjacent
tiles have the same depth. In the current implementation, this as-
pect is not yet considered, so in some cases, adjacent wall tiles
with only very small offsets were not merged to form a single
wall surface because the features in the cells of the tiles were not
similar enough.

The overlap between the first and second floor in the facade struc-
ture in figure 7b) is due to the fact that the current version does
not include constraints that force the floors below a given tile to
end exactly at the same height level in order to form a sensible

platform for the tile to rest on. Implementing this constraint set is
the next step for the improvement of the facade homogenization
approach.

The generalization operator of homogenization is widely appli-
cable beyond simple facade elements – one may even compose
complete suburbs by a few references to parts lists of prefabri-
cated building vendors.

Note that CityGML supports managing objects as template in-
stances through the concept of XML XLink elements. In order to
exploit the full capacity of this approach, data structures to model
slight modifications of a referenced object in CityGML would be
helpful.

REFERENCES

Anders, K.-H., 2005. Level of detail generation of 3d building
groups by aggregation and typification. In: Proceedings of the
22nd International Cartographic Conference of the ICA.

Fan, H., Meng, L. and Jahnke, M., 2009. Generalization of 3D
Buildings Modelled by CityGML. In: Advances in GIScience:
Proceedings of 12th AGILE Conference on GIScience, Lecture
Notes in Geoinformation and Cartography, Springer, pp. 387–
405.

Guercke, R., 2014. Optimization Aspects in the Generalization
of 3D Building Models. Dissertation, Leibniz Universität Han-
nover. Deutsche Geodätische Kommission bei der Bayerischen
Akademie der Wissenschaften. Reihe C. Dissertationen. Heft Nr.
723.

Guercke, R., Götzelmann, T., Brenner, C. and Sester, M., 2011.
Aggregation of lod 1 building models as an optimization problem.
ISPRS Journal of Photogrammetry and Remote Sensing 66(2),
pp. 209 – 222. Quality, Scale and Analysis Aspects of Urban
City Models.

Hake, G., Grünreich, D. and Meng, L., 1996. Kartographie. Vi-
sualisierung raum-zeitlicher Informationen. Walter de Gruyter &
Co., Berlin, Germany.

Haunert, J.-H., 2009. Aggregation in Map Generalization
by Combinatorial Optimization. Dissertation, Leibniz Univer-
sität Hannover. Deutsche Geodätische Kommission bei der Bay-
erischen Akademie der Wissenschaften. Reihe C. Dissertationen.
Heft Nr. 626.

IBM ILOG, 2011. CPLEX, Optimization, Operations Research,
Mathematical Programming, Linear Programming, Integer
Programming, Mixed Integer Programming, Quadratic Program-
ming, Modeling and solving optimization problems. Website,
URL: http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

Kolbe, T. H., Gröger, G. and Plümer, L., 2005. CityGML – In-
teroperable Access to 3D City Models. In: Proceedings of the
first International Symposium on Geo-Information for Disaster
Management, Springer Verlag, pp. 21–23.

Ripperda, N., 2008. Grammar based facade reconstruction us-
ing rjmcmc. Photogrammetrie Fernerkundung Geoinformation
(PFG) 2, pp. 83–92.

Sester, M. and Klein, A., 1999. Rule based generalization of
buildings for 3d-visualization. In: Proceedings of the 19th Inter-
national Cartographic Conference of the ICA.

